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Roadmap and summary

1. Approximation theory
a. Neural network approximation
b. Challenges to graph input
2. Graph embeddings and graph limits
a. Graphons and the limit of dense graph sequences

b. Challenges to sparse graph sequences



Roadmap and summary

1. Approximation theory

a. Neural network approximation



Deep learning framework

Ground truth /* : 2 — % that is:

- Continuous/smooth
- Regular

Model
fo: X — Y thatis:

- Universal
- Optimization/GPU-friendly
- Efficient




Function approximation

How do you design a family of universal models

| Theorem (Weierstrass, 1885): For any continuous |
| function f on a real interval [a, b], for any € > 0, there ft universality
| exists a polynomial p such that ||f —p|l,, <€

~'5 Theorem (Hornik, Stinchcombe, White 1989): For ;
' any continuous function f on a real hypercube (0,1]¢, 'i
| for any € > 0, there exists a two-layer neural net p |

such that ||f — p|| ., < €

optimization/GPU-
friendly

| Theorem (Telgarsky, 2015): There exists a family of |

| classification problems indexed by k, such thatto |
i achieve error < 1/6, two-layer neural nets require | efficiency

(X):W (WX+I7 + b, } _ , f

a0 = PR OD TR 990 nodes while 2klayer neural nets require O(K)



Roadmap and summary

1. Approximation theory

b. Challenges to graph input



Deep learning approaches to learning on graphs
Non-Euclidean graph space poses unique challenges

* Graph neural networks (GNNSs) (Gilmer et al., 2017)

. Direct parameterization of functions on space of graphs (e.g. R/ S,) and
embellishments (vertex/edge features)

» Exact invariance (e.g. R™"/S — R)



Graph (convolutional) neural networks

Deep learning architectures with built-in graph symmetry

« G(C)NN with parameter /1, graph G and node features X:
GNN(/, G, X) = X, (h, G, X)

K
X,(h, G, X) = p(Al(h, G)Xl_l), A(h,G) =Y Iy Adj(GY
k=0

Xo(h, G, X) = X

» /1 does not depend on (size of) G



GNN as operator on node feature
GNN(4, G, ) : £X([n]) = £%([n]),  n=|V(G)]

K
where A(h, G) := ) Iy, Adj(G)*
k=0



GNN as operator on node feature
GNN(4, G, ) : £X([n]) = £X([n]),  n=|G|:=|V(G)]

v

K
2] . 1 = Y Al Adi(G)
AZl(h, G, ) Ap (1, G, - ) = kzo, fy o AAI(G)



Is GNN a ‘good’ model?

Ground truth

.8 XX > Y thatis:
- Continuous/smooth
- Regular

Model
fo: XX = Y thatis:

- Universal
- Optimization/GPU-friendly
- Efficient

Universality - Efficiency tradeoff due to hardness of Gl



Roadmap and summary

2. Graph embeddings and graph limits
a. Graphons and the limit of dense graph sequences

b. Challenges to sparse graph sequences



Graphons and the limit of dense graph sequences

 (Graphons are symmetric, Lebesgue-measurable functions

W 10,11 x10,1] = [0,1]

R -




Graphons and the limit of dense graph sequences
Chayes, Borgs, Lovasz, Sos, Vesztergombi ~2007

* Graphons are symmetric, Lebesgue-measurable functions

W:[0,1] x]0,1] —» [0,1]

e |nterpretation:

1. (V=|[0,1,E={(u,v) : W(u,v) #0}) (informal)

2. Finite graph sampler:

1. Given number of nodes 1, sample v, ..., v, i Unit]0,1]

2. Foreachi < j € [n], sample (v, vj) g Bern(W (v, vj))
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Approximation for sparse graph sequences
T.L., S. Jegelka (2023)

» d,; metric compares graphop operators (Backhausz and Szegedy, 2022 +
modification to work with continuity assumptions)

» For A, a discretization of limit object A

d, (GNN(h, A, - ),GNN(1, A, - )) < O (n—%>



Example of sparse graph limit: graphings

Difficult to apply existing spectral techniques.

Ommodl ml()=xI I | | | =1

R  z—a 'm'od 1 ((@+a)  ((+b)  (z—=b) ((z—a)) Ei th
(a) Cayley graph of Z b) Cayley graph of Z*. (()) is computation mod 1 Igengap mav no e
m continuous at the limit!
O @ N T
((g;—a x—|—2 :c—|—4 :1;—|—6 :c—|—8

c) Polymer graph whose unit is a graph
Wlth 5 vertices. The pattern extends ad (d) Graphing of (c). (()) is computation mod 0.2.
infinitum on both sides. Edges drawn are from a single unit in the polymer.

Figure 2: Examples of limit objects. The vertex set is the interval [0, 1]. Example edges are
the arcs connecting points on the intervals. a and b are distinct irrational numbers. In each
graph, edges that miss an endpoint are identified as a single edge connecting the two existing
endpoints.



Assumptions

Structural assumptions on Adj(G) instead of spectral

Adj(G) sends (n-piece) piece-wise constant function
to (n-piece) piece-wise constant function, OR
for all n in resolution set ./

Adj(G) sends Lipschitz function
to Lipschitz function

Other assumptions:
» Adj(G) is a Lipschitz operator
« |/4]| <1 point-wise
« pis 1-Lipschitz




Example: cycle graphs
C,, C; embedded in [0,1], resolution set ./ = {4,8}




Other examples

Satisfying structural assumptions

& Adj(G) sends piecewise constant function
2R 2 to piecewise constant function

9 graph|

Ls‘ciesb Adj(G) sends Lipschitz function

to Lipschitz function




Approximation for sparse graph sequences
T.L., S. Jegelka (2023)

» d,; metric compares graphop operators (Backhausz and Szegedy, 2022 +
modification to work with continuity assumptions)

» For A, a discretization of limit object A

d, (GNN(h, A, - ),GNN(1, A, - )) < O (n—%>



Summary

* [o obtain approximation theory results, additional structures are needed on
the space of graphs

* We prove an approximation result for GNNs by graph limit

* Unlike dense graphs, sparse graph limits can be pathological, which was
circumvented by enforcing structural assumptions



Thank you
Q&A






Machine learning on graph structures

* Social networks . e e
. : : . “ . Stanford Large Network
Community detection .SNAP‘ Dataset Collection
e Link prediction S

 Molecular graphs

* Property prediction

Cl=

o OPEN GRAPH BENCHMARK
 (Geometry prediction

* Traditional tasks in vision (pixel graphs) or NLP (path graphs)



Deep learning approaches to graph learning

* Graph neural networks (GNNSs) (Gilmer et al., 2017)

. Direct parameterization of functions on space of graphs (e.g. R/ S,) and
embellishments (vertex/edge features)

o Exact invariant (e.g. R™"/S, — R) or equivariant (e.g. R™"/S — R"/S)
* Graph transformers (Velickovic et al., 2018)
* Graph information added to input of transformer (self attention layers)

e Mixed architectures



Graph (convolutional) neural networks

Deep learning architectures with built-in graph symmetry

e G(C)NN with parameter /1, graph G and node features X:
GNN(/, G, X) = X, (h, G, X)

K
X(h, G, X) = p(Al(h, G)Xl_l), A(h,G) =Y Iy Adj(GY
k=0

Xo(h, G, X) = X

» /1 does not depend on (size of) G



GNN as operator on node feature
GNN(4, G, ) : £X([n]) = £%([n]),  n=|V(G)]

K
where A(h, G) := ) Iy, Adj(G)*
k=0



GNN as operator on node feature
GNN(4, G, ) : £X([n]) = £X([n]),  n=|G|:=|V(G)]

v

K
2] . 1 = Y Al Adi(G)
AZl(h, G, ) Ap (1, G, - ) = kzo, fy o AAI(G)



Transferability of GNNs

GNNs on ‘similar’ graphs are also ‘similar’

* [rain on small graphs and test on large graphs
* Motivations:

 Explanation for pretraining performance

e Training vs evaluation compute difference

* QOut-of-distribution generalization/extrapolation



Transferability of GNNs

GNNs on ‘similar’ graphs are also ‘similar’

dGNN(GNN(h’ Gl’ y ), GNN(h, Gz, y )) VS dG(Gl’ Gz)



Size transferability of GNNs

GNNs on ‘similar’ graphs of different sizes are also ‘similar’

Sequence of graphs [}, 5, I3, I, ... Of increasing size n, n,, ns, ny, ...

/

dean(GNN(72, Gy, - ), GNN(4, G, +)) VS decreasing_in(| G, |,(|G,|)

eg. 1/|G, |+ 1/|G,|% ¢ >0



Size transferability of GNNs

A limit approach (F, —= G* in some limit)

dGNN(GNN(h’ Gl’ * ), GNN(h, Gz, * ))
<

dean(GNN(1, Gy, - ), GNN(A, G, -)) VS O(1/G,|%)

'
denn(GNN(1, Gy, - ), GNN(A, G™, -)) VS o1/ G, |%)



This paper

We show size transferability for different graph sequences, in particular sparse graphs

Via approximation bound: d; n(GNN(/4, G, - ), GNN(h, G*, - )) < O(1/| G, |%)

= — Sparse : Dense
Bounded-degree | Relatively-sparse
Number of edges O(n) O(nlogn) O(n?)
: infinite grids, hypercubes,
Examples covered under our assumptions polymer graphs | Hamming graphs graphons
Graphons (Ruiz et al., 2023a) O(n=1)
Unbounded graphons (Maskey et al., 2023) inexplicit
Random graph model (Keriven et al., 2020) O((logn)~1/?) O(n~1/?)
Spectral methods (1 layer) (Levie et al., 2022) inexplicit inexplicit
Graphings (1 layer) (Roddenberry et al., 2022) inexplicit

Table 1: Summary of our results compared to related work. Quantitative results (e.g.
O(n~1')) upper-bound the distance between GNNs on sampled graphs of size n and the
limiting object in term of n (in an appropriate metric and limit notion). Empty cells are
graph models where the approaches in the corresponding papers do not apply to or give

trivial bounds (e.g. bounds that compare to a constant-0 graphon). "Inexplicit" refers to
asymptotic results where rates of convergence is not explicit.



Graph limit: graphons

Chayes, Borgs, Lovasz, Sos, Vesztergombi ~2007

 (Graphons are symmetric, Lebesgue-measurable functions

W:[0,1] x]0,1] = [0,1]

* |nterpretation:

1. (V=[0,1],E = {(u,v) : W(u,v) #0}) (informal)

2. Finite graph sampler:

1. Given number of nodes 7, sample v, ..., v, iy Unit]0,1]

2. Foreachi < j € [n], sample (v, vj) g Bern(W (v, vj))



Transferability via graphons
Ruiz, Chamon, Ribeiro, 2023

H GNN(ha Gla ) ) o GNN(ha Gza ) ))HL2 S 0( ‘ Gl ‘—1 T ‘GZ‘_I) + €
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Example of sparse graph limit: graphings

Difficult to apply existing spectral techniques.

T |
OmmOdl ﬁlol | , | | | =]_

| 1 1

x z—a mod 1 ((z + a)) (($+b)) ((z—=0)) ((&—a))
(a) Cayley graph of Z (b) Cayley graph of Z?. (()) is computation mod 1
M ; \‘ m

(c) Polymer graph whose unit is a graph
with 5 vertices. The pattern extends ad (d) Graphing of (c). (()) is computation mod 0.2.
infinitum on both sides. Edges drawn are from a single unit in the polymer.

Figure 2: Examples of limit objects. The vertex set is the interval [0, 1]. Example edges are
the arcs connecting points on the intervals. a and b are distinct irrational numbers. In each
graph, edges that miss an endpoint are identified as a single edge connecting the two existing
endpoints.

Eigengap may not bhe
continuous at the limit



GNN as operator on node feature
GNN(A, G, - ) : L%([0,1]) = L*([0,1]), [0,1] = V(G)

AQ(ha G9 ) ) R A3(h9 Ga ) ) A4(h9 Ga ) )

K
where A((h, G) := ) h; Adj(G),  Adj(G) : L*[0,1] — L?[0,1]
k=0



Assumptions

Structural assumptions on Adj(G) instead of spectral

Adj(G) sends (n-piece) piece-wise constant function
to (n-piece) piece-wise constant function, OR
for all n in resolution set ./

Adj(G) sends Lipschitz function
to Lipschitz function

Other assumptions:
» Adj(G) is a Lipschitz operator
« |/4]| <1 point-wise
« pis 1-Lipschitz




Example: cycle graphs
C,, C; embedded in [0,1], resolution set ./ = {4,8}




Other examples

Satisfying structural assumptions

& Adj(G) sends piecewise constant function
2R 2 to piecewise constant function

9 graph|

Ls‘ciesb Adj(G) sends Lipschitz function

to Lipschitz function




Main theorem: Approximation and Size transferability
via graphop (Backhausz and Szegedy 2022: action convergence)

» d,,; metric compares operators (Backhausz and Szegedy, 2022 + modification
to work with continuity assumptions)

» For A, a discretization of limit object A
d,(GNN(1, A , - ), GNN(/1, A, - ) < O (n)

» ForA ,A two different discretizations of the same limit object of size m, n

|

dy(GNN(, A ), GNN(, A, - )) < O (m—% 4 n—z)



Discretizing adjacency operator/GNNs

‘Averaging connections’

ﬁﬁm ) @m&

resolution = 8§ resolution = 4

More generally,

A X(v) = mJ (AX)dA, forallv € [m]/m, GNN (h,A,X) := GNN(, A, , X),

m



Summary

* We prove an approximation and size transferability result for GNNs by graph

limit.
* Unlike dense graphs, sparse graph limits can be pathological.

* By enforcing structural assumptions, our result works for sparse and dense
graph limits.



Future directions

 Relaxing assumptions

* Warning: unconditional approximation theorem solves group theoretic open
questions (e.g. existence of non-sofic groups) - Backhausz and Szegedy.

« But other than that?

 Graph transformer

* Optimization of sequence transformer via Kuramoto model



Q&A

 Thank you for your attention.



Back up slides




Optimization of transformers via Kuramoto model

A MATHEMATICAL PERSPECTIVE ON TRANSFORMERS

BORJAN GESHKOVSKI, CYRIL LETROUIT, YURY POLYANSKIY,
AND PHILIPPE RIGOLLET Part 3: Further questions. We propose potential avenues for future research, largely
in the form of open questions substantiated by numerical observations. We first

focus on the case d = 2 (Section 7) and elicit a link to Kuramoto oscillators. We

ABsTRACT. Transformers play a central role in the inner workings of large
language models. We develop a mathematical framework for analyzing Trans-
formers based on their interpretation as interacting particle systems, with a
particular emphasis on long-time clustering behavior. Our study explores the
underlying theory and offers new perspectives for mathematicians as well as
computer scientists.

Graphop Mean-Field Limits for Kuramoto-Type Models

Marios-Antonios Gkogkas* and Christian Kuehn *

December 16, 2020

For dense graphs converging to graphon limits, one also knows that mean-field approximation holds
for certain classes of models, e.g., for the Kuramoto model on graphs. Yet, the space of intermediate
density and sparse graphs is clearly extremely relevant. Here we prove that the Kuramoto model
can be be approximated in the mean-field limit by far more general graph limits than graphons.



Graphings and Benjamini-Schramm convergence
Local convergence of bounded-degree graphs

e (X, A, ) Borel probability measure on topological space X. Graphings are graphs
with vertex set X and Borel edge set £ C X X X with a symmetric constraint.

» Rooted distance: d(G,, G,) = 1/k where k is the smallest number such that the k
-neighborhood of G| and G, around their roots are isomorphic.

 Theorem: space of rooted graph with rooted distance is compact

e Cor: space of Borel probability measures on rooted graphs is compact in weak
topology

 BS convergence: embed graphs as Borel measures that is uniform over root, for
each radius



Graphop

Backhausz and Szegedy, 2022

011 (0.30.21-0.8) %(5(0,3,0_4) +0(0.2,1.3)
v = ( 1ol 8) = l =

1000 (0.41.30.50.3) +0(1,0.5) + 5(_0,8,003))
Figure 2: Graph = operator = action = measure (computing an element in the 1-profile of a
graph).

Figure: Backhausz and Szegedy

* P-operators: linear bounded (in operator norm) operators

1 n
k-profile: the set & (A) of all possible probability measures of the form D(v,, ..., v;, Avy, ..., Av,) = — Z 5(v1j Ve alAV T [AV)
j=1

. Hausdorff distance between closed sets of probability measures: dy (X, Y) = max(sup inf d(x, y), sup int d(x, y))

x Y y X

Action convergence metric: d; (A, B) = Z 2_de(cS’ (A), 5 (B))
k=1



Small experiment for rate

Figure 1: Hausdorfl metric between samples
N from 1-profiles of 2-hidden-layer GNN on finite
-1 AN T polymer graphs vs on large polymer graphs (see

e T Appendix A for polymer graphs). The GNN

T —2

<) uses GSO A2 + A,, where A,, is the normalized

&3 adjacency matrix on n nodes and ReLLU nonlin-
—4- earties at each layer. Different solid lines are
I log(1/resolution) different random draws of functions that make

_____ log(1/sgrt(resolution))

up the estimated 1-profile. See Appendix A

10 15 20 25 30 35 for details.
log resolution




Graphop neural network as P-operator

* There is no requirement for P-operators to be linear!

* Action convergence can be defined for nonlinear operators

Conjecture 1 (Action convergence of graphop neural networks). Let (A, )nen be an action
convergent sequence of graphops. Then (®(h, A,,-))neN %S an action convergent sequence of
P-operators.



