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Deep learning framework

Ground truth  that is: 
- Continuous/smooth 

- Regular 
…

f* : 𝒳 → 𝒴

Model 
 that is: 

- Universal 
- Optimization/GPU-friendly 

- Efficient 
…

fθ : 𝒳 → 𝒴



Function approximation
How do you design a family of universal models

universality

optimization/GPU-
friendly

efficiency

Theorem (Weierstrass, 1885): For any continuous 
function  on a real interval , for any , there 

exists a polynomial  such that  
f [a, b] ϵ > 0

p ∥f − p∥∞ < ϵ

Theorem (Hornik, Stinchcombe, White 1989): For 
any continuous function  on a real hypercube , 

for any , there exists a two-layer neural net  
such that  

f [0,1]d

ϵ > 0 p
∥f − p∥∞ < ϵ

Theorem (Telgarsky, 2015): There exists a family of 
classification problems indexed by , such that to 
achieve error , two-layer neural nets require 

 nodes while -layer neural nets require 

k
< 1/6

2Ω(k) 2k O(k)

ρρρbias

bias input

output

fW,b(x) = W2ρ(W1x + b1) + b2
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Deep learning approaches to learning on graphs
Non-Euclidean graph space poses unique challenges

• Graph neural networks (GNNs) (Gilmer et al., 2017)


• Direct parameterization of functions on space of graphs (e.g. ) and 
embellishments (vertex/edge features)


• Exact invariance (e.g. )

ℝn×n/Sn

ℝn×n/Sn → R



Graph (convolutional) neural networks
Deep learning architectures with built-in graph symmetry

• G(C)NN with parameter , graph  and node features :











•  does not depend on (size of) 

h G X

GNN(h, G, X) = XL(h, G, X)

Xl(h, G, X) = ρ(Al(h, G)Xl−1), Al(h, G) :=
K

∑
k=0

hl,k Adj(G)k

X0(h, G, X) = X

h G



GNN as operator on node feature
GNN(h, G, ⋅ ) : ℓ2([n]) → ℓ2([n]), n = |V(G) |

A1(h, G, ⋅ )
ρ

where Al(h, G) :=
K

∑
k=0

hl,k Adj(G)k

ρ
A2(h, G, ⋅ )

ρ
A3(h, G, ⋅ )

Id
A4(h, G, ⋅ )



GNN as operator on node feature
GNN(h, G, ⋅ ) : ℓ2([n]) → ℓ2([n]), n = |G | := |V(G) |

A[1]
1,3(h, G, ⋅ )

A[1]
1,2(h, G, ⋅ )

ρ

A[1]
1,1(h, G, ⋅ )

ρ

ρ
⋯

A[2]
3,3(h, G, ⋅ )

ρ

ρ

ρ

ρ

A[l]
f,g(h, G, ⋅ ) :=

K

∑
k=0

h[l]
f,g,k Adj(G)k

ρ

ρ
⋯

⋯



Is GNN a ‘good’ model?

Ground truth 
 that is: 

- Continuous/smooth 
- Regular 

…

f* : 𝒢 × 𝒳 → 𝒴

Model 
 that is: 

- Universal 
- Optimization/GPU-friendly 

- Efficient 
…

fθ : 𝒢 × 𝒳 → 𝒴

Universality - Efficiency tradeoff due to hardness of GI
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Graphons and the limit of dense graph sequences

• Graphons are symmetric, Lebesgue-measurable functions 
W : [0,1] × [0,1] → [0,1]

1

2

3

5

4

⟹



Graphons and the limit of dense graph sequences
Chayes, Borgs, Lovász, Sós, Vesztergombi ~2007

• Graphons are symmetric, Lebesgue-measurable functions 



• Interpretation:


1.   (informal)


2. Finite graph sampler: 


1. Given number of nodes , sample 


2. For each , sample 

W : [0,1] × [0,1] → [0,1]

(V = [0,1], E = {(u, v) : W(u, v) ≠ 0})

n v1, …, vn
iid∼ Unif[0,1]

i < j ∈ [n] (vi, vj)
iid∼ Bern(W(vi, vj))



Most realistic graphs are not dense

Stanford Large Network 

Dataset Collection



Approximation for sparse graph sequences
T.L., S. Jegelka (2023) 

•  metric compares graphop operators (Backhausz and Szegedy, 2022 + 
modification to work with continuity assumptions)


• For  a discretization of limit object 


dM

An A

dM(GNN(h, An, ⋅ ), GNN(h, A, ⋅ )) ≤ O (n− 1
2 )



Example of sparse graph limit: graphings
Difficult to apply existing spectral techniques.

Eigengap may not be 
continuous at the limit!



Assumptions
Structural assumptions on  instead of spectralAdj(G)

 sends ( -piece) piece-wise constant function

 to ( -piece) piece-wise constant function,


for all  in resolution set 

Adj(G) n
n

n 𝒩

 
Adj(G)

 sends Lipschitz function

 to Lipschitz function

Adj(G)OR

 1 0  1 0

Other assumptions: 
•  is a Lipschitz operator

•  point-wise

•  is -Lipschitz 

Adj(G)
|h | ≤ 1
ρ 1



 0  1

Example: cycle graphs
 embedded in , resolution set C4, C8 [0,1] 𝒩 = {4,8}

 0  1

 Adj(G)

 1 0  1 0

 Adj(G)

 1 0  1 0

satisfies

satisfies

satisfies



Other examples
Satisfying structural assumptions

Paths/Grids/k-D grids

Hypercube/Hamming graph

Polymer graphs

Lipschitz graphons
satisfies  sends Lipschitz function


 to Lipschitz function
Adj(G)

 sends piecewise constant function

 to piecewise constant function

Adj(G)satisfies}



Approximation for sparse graph sequences
T.L., S. Jegelka (2023) 

•  metric compares graphop operators (Backhausz and Szegedy, 2022 + 
modification to work with continuity assumptions)


• For  a discretization of limit object 


dM

An A

dM(GNN(h, An, ⋅ ), GNN(h, A, ⋅ )) ≤ O (n− 1
2 )



Summary

• To obtain approximation theory results, additional structures are needed on 
the space of graphs


• We prove an approximation result for GNNs by graph limit


• Unlike dense graphs, sparse graph limits can be pathological, which was 
circumvented by enforcing structural assumptions



Thank you
Q&A





Machine learning on graph structures

• Social networks


• Community detection


• Link prediction

• Molecular graphs


• Property prediction


• Geometry prediction 

Stanford Large Network 

Dataset Collection

• Traditional tasks in vision (pixel graphs) or NLP (path graphs)



Deep learning approaches to graph learning

• Graph neural networks (GNNs) (Gilmer et al., 2017)


• Direct parameterization of functions on space of graphs (e.g. ) and 
embellishments (vertex/edge features)


• Exact invariant (e.g. ) or equivariant (e.g. )


• Graph transformers (Veličković et al., 2018)


• Graph information added to input of transformer (self attention layers)


• Mixed architectures

ℝn×n/Sn

ℝn×n/Sn → R ℝn×n/Sn → Rn/Sn



Graph (convolutional) neural networks
Deep learning architectures with built-in graph symmetry

• G(C)NN with parameter , graph  and node features :











•  does not depend on (size of) 
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GNN as operator on node feature
GNN(h, G, ⋅ ) : ℓ2([n]) → ℓ2([n]), n = |G | := |V(G) |

A[1]
1,3(h, G, ⋅ )

A[1]
1,2(h, G, ⋅ )

ρ

A[1]
1,1(h, G, ⋅ )

ρ

ρ
⋯

A[2]
3,3(h, G, ⋅ )

ρ

ρ

ρ

ρ

A[l]
f,g(h, G, ⋅ ) :=

K

∑
k=0

h[l]
f,g,k Adj(G)k

ρ

ρ
⋯

⋯



Transferability of GNNs
GNNs on ‘similar’ graphs are also ‘similar’

• Train on small graphs and test on large graphs


• Motivations:


• Explanation for pretraining performance


• Training vs evaluation compute difference 


• Out-of-distribution generalization/extrapolation



Transferability of GNNs
GNNs on ‘similar’ graphs are also ‘similar’

 dGNN(GNN(h, G1, ⋅ ), GNN(h, G2, ⋅ )) vs dG(G1, G2)



Size transferability of GNNs
GNNs on ‘similar’ graphs of different sizes are also ‘similar’

 dGNN(GNN(h, G1, ⋅ ), GNN(h, G2, ⋅ )) vs decreasing_fn( |G1 | , ( |G2 | )

 Sequence of graphs  of increasing size F1, F2, F3, F4, … n1, n2, n3, n4, …

e.g. 1/ |G1 | c + 1/ |G2 | c, c > 0



Size transferability of GNNs
A limit approach (  in some limit)Fn

n→∞ G∞

dGNN(GNN(h, G1, ⋅ ), GNN(h, G∞, ⋅ )) vs O(1/ |G1 | c)

dGNN(GNN(h, G2, ⋅ ), GNN(h, G∞, ⋅ )) vs O(1/ |G2 | c)

dGNN(GNN(h, G1, ⋅ ), GNN(h, G2, ⋅ ))

≤

+ approximation theorems



This paper
We show size transferability for different graph sequences, in particular sparse graphs

Via approximation bound: dGNN(GNN(h, G1, ⋅ ), GNN(h, G∞, ⋅ )) ≤ O(1/ |G1 | c)



Graph limit: graphons
Chayes, Borgs, Lovász, Sós, Vesztergombi ~2007

• Graphons are symmetric, Lebesgue-measurable functions 



• Interpretation:


1.   (informal)


2. Finite graph sampler: 


1. Given number of nodes , sample 


2. For each , sample 

W : [0,1] × [0,1] → [0,1]

(V = [0,1], E = {(u, v) : W(u, v) ≠ 0})

n v1, …, vn
iid∼ Unif[0,1]

i < j ∈ [n] (vi, vj)
iid∼ Bern(W(vi, vj))



Transferability via graphons
Ruiz, Chamon, Ribeiro, 2023

 ∥ GNN(h, G1, ⋅ ) − GNN(h, G2, ⋅ ))∥L2
≤ O( |G1 |−1 + |G2 |−1 ) + ϵ

Note: It is possible to optimize Ruiz et al.’s bound to get rid of the  but incur a slower rateϵ



Most realistic graphs are not dense



Example of sparse graph limit: graphings
Difficult to apply existing spectral techniques.

Eigengap may not be 
continuous at the limit!



A1(h, G, ⋅ )

GNN as operator on node feature
GNN(h, G, ⋅ ) : L2([0,1]) → L2([0,1]), [0,1] = V(G)

ρρ ρ Id

where Al(h, G) :=
K

∑
k=0

hl,k Adj(G)k, Adj(G) : L2[0,1] → L2[0,1]

A2(h, G, ⋅ ) A3(h, G, ⋅ ) A4(h, G, ⋅ )



Assumptions
Structural assumptions on  instead of spectralAdj(G)

 sends ( -piece) piece-wise constant function

 to ( -piece) piece-wise constant function,


for all  in resolution set 

Adj(G) n
n

n 𝒩

 
Adj(G)

 sends Lipschitz function

 to Lipschitz function

Adj(G)OR

 1 0  1 0

Other assumptions: 
•  is a Lipschitz operator

•  point-wise

•  is -Lipschitz 

Adj(G)
|h | ≤ 1
ρ 1



 0  1

Example: cycle graphs
 embedded in , resolution set C4, C8 [0,1] 𝒩 = {4,8}

 0  1

 Adj(G)

 1 0  1 0

 Adj(G)

 1 0  1 0

satisfies

satisfies

satisfies



Other examples
Satisfying structural assumptions

Paths/Grids/k-D grids

Hypercube/Hamming graph

Polymer graphs

Lipschitz graphons
satisfies  sends Lipschitz function


 to Lipschitz function
Adj(G)

 sends piecewise constant function

 to piecewise constant function

Adj(G)satisfies}



Main theorem: Approximation and Size transferability
via graphop (Backhausz and Szegedy 2022: action convergence)

•  metric compares operators (Backhausz and Szegedy, 2022 + modification 
to work with continuity assumptions)


• For  a discretization of limit object 





• For  two different discretizations of the same limit object of size 


dM

An A

dM(GNN(h, An, ⋅ ), GNN(h, A, ⋅ )) ≤ O (n− 1
2 )

Am, An m, n

dM(GNN(h, Am, ⋅ ), GNN(h, An, ⋅ )) ≤ O (m− 1
2 + n− 1

2 )



Discretizing adjacency operator/GNNs
‘Averaging connections’

 0  1resolution = 8  0  1resolution  = 4
discretize

More generally, 

AmX(v) := m∫
v

v− 1
m

(AX̃)dλ,  for all v ∈ [m]/m, GNNm(h, A, X) := GNN(h, Am, X),



Summary

• We prove an approximation and size transferability result for GNNs by graph 
limit.


• Unlike dense graphs, sparse graph limits can be pathological.


• By enforcing structural assumptions, our result works for sparse and dense 
graph limits.



Future directions

• Relaxing assumptions 


• Warning: unconditional approximation theorem solves group theoretic open 
questions (e.g. existence of non-sofic groups) - Backhausz and Szegedy.


• But other than that?


• Graph transformer


• Optimization of sequence transformer via Kuramoto model



Q & A

• Thank you for your attention. 



Back up slides



Optimization of transformers via Kuramoto model



Graphings and Benjamini-Schramm convergence
Local convergence of bounded-degree graphs

•  Borel probability measure on topological space . Graphings are graphs 
with vertex set  and Borel edge set  with a symmetric constraint. 


• Rooted distance:  where  is the smallest number such that the 
-neighborhood of  and  around their roots are isomorphic. 


• Theorem: space of rooted graph with rooted distance is compact


• Cor: space of Borel probability measures on rooted graphs is compact in weak 
topology


• BS convergence: embed graphs as Borel measures that is uniform over root, for 
each radius

(X, ℬ, ν) X
X E ⊂ X × X

d(G1, G2) = 1/k k k
G1 G2



Graphop
Backhausz and Szegedy, 2022

Figure: Backhausz and Szegedy

• P-operators: linear bounded (in operator norm) operators 


• k-profile: the set  of all possible probability measures of the form 


• Hausdorff distance between closed sets of probability measures: 


• Action convergence metric: 

𝒮k(A) 𝒟(v1, …, vk, Av1, …, Avk) =
1
n

n

∑
j=1

δ(v1, j,…,vk, j,[Av1]j,…,[Avk]j)

dH(X, Y ) = max(sup
x

inf
y

d(x, y), sup
y

inf
x

d(x, y))

dM(A, B) =
∞

∑
k=1

2−kdH(𝒮k(A), 𝒮k(B))



Small experiment for rate



Graphop neural network as P-operator

• There is no requirement for P-operators to be linear!


• Action convergence can be defined for nonlinear operators


