H Bl Massachusetts
I I Institute of

Technology

On the hardness of learning
under symmetries

presented by Thien Le

based on the ICLR 2024 paper of the same name
by Bobak T. Kiani*, L*, Hannah Lawrence*, Stefanie Jegelka, Melanie Weber




Input-domain symmetries

Machine learning tasks often specify symmetries in the input space

 Object detection in
Images

® POl nt CIOUdS Figure from MathWorks ‘pointCloud’ tutorial
 Graphs

Figure from Wolfram MathWorld ‘Graph automorphism’




Input-domain symmetries

In general, there is a smaller effective domain

L - /G

iInput to general-purpose functions: effective input domain:

- convenient representation - smaller, succinct representation

- compatible with “GPU”-learning - Incorporate known inductive bias
Examples

- pixel RGB values - equivalence classes of rotated images

- adjacency matrix/Laplacian of graphs - graphs

- coordinates in 3D space - object in 3D space



Model symmetries

e Convolutional neural networks (CNN) + looped filter: translation-invariant
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* (Invariant) graph neural network: node-permufation-invariant
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* Transformer without positional encoding: token-permutation-invariant



Model symmetries

In general, there is a smaller function space containing some ground truth

{ inputto \
\, model [/

ground truth functions &

general purpose neural network . .
invariant neural networks

/ labels/ \
{ regression }
\. values /



Does learning become ‘easier’
under symmetric ground truths?

1. How do we prove this formally??
2. Extending existing techniques?

Spoiler:
1. Boolean functions: clear application of our intuition
2. Real-valued functions: messier, but can still show lower bounds!



Learning under symmetries

Learning a smaller function class

e Conceptclass A C{f(:-,0): X - R|0e O, f(X,0)=1fgX, 0),Vg e G}.

e Ground truth function A @ h* : & — |

» E.g. learning algorithm: given n samples (x;, y; = h*(x;))'_,, solve ERM

néin 2 c(f(x;, 0),y;)
i=1

Statistical problem: How many samples do we need to learn up to some error? -
generalization bounds

Computational problem: Are there efficient algorithms? - NP hardness, PAC learning, SQ
learning



PAC learning (L. G. Valiant, 1984)

Set up

» Given a concept class ¢ C pEd (set of Boolean-output functions over ).

» Given a distribution & over 2 and a concept ¢ € €, samples are drawn
from the joint distribution & . over & X {£1}.

 Given error parameter ¢ € (0,1), confidence parameter 6 € (0,1).

Examples
input set 0-1 adjacency matrix of graphs
concept graphs with Eulerian cycles
distribution |Erdds-Rényi




PAC learning (L. G. Valiant, 1984)

* A (distribution-dependent) PAC-learning algorithm is a function
A=A" o (X X{xl})" - 24 such that for any ¢ € G,

[ ZN@?[errorC(A(Z)) > ¢] < 0, with error.(h) := Py _glh(X) # c(X)]

e |t is efficient if m is polynomial in 1/€,1/0, | ¢c|and A can be evaluated in
polynomial time in its input.

Very general framework of learning, but hard to give proofs



(Correlational) statistical queries (Kearns, 1998)
A natural restriction of PAC

* Algorithms do not have access to samples but statistics over sample distribution.

» Given concept ¢ : X — % and sample distribution & . over ' X %, an SQ
query oracle

* IN:query g : X X Y — |—1,1] and tolerance parameter t

e OUT: SQ(g, T) & _(X,Y)N@C[g(X’ Y)] + 7

« A CSQ query oracle requires g(x,y) = f(x) - yforsomef: X — ¥

. CSQ(g, 1) € ([, C)12g) T 7 returns a correlation value



Hardness of learning in the (C)SQ model

» Aclass & of functions f : & — % is hard to learn under the (C)SQ model if
there are no algorithm A := A" ., such that for all c € #,

» A inputs m = poly(1/¢, | c|) (C)SQ oracle results with tolerance
=1 = poly(1/e, | c|), and

+ outputs a hypothesis f'such that ||f — ¢|[ 25 < €



Population gradient descent + noise + square loss & CSQ
Why do we study CSQ model?

 (Gradient of the population risk under square loss decomposes as:

— VoEx y[(fIX,0) = Y)?] = Ex [ fIX,0) - V, X, )] -

2 _X,Y[Y° V f(Xa )]

independent of Y CSQ

 Adding (Gaussian) noise in each gradient step to simulate error in CSQ oracle
(controlled by 7)

N N




CSQ cSQ cPAC

Relationship between 3 learning models

* There is an exponential separation between SQ and PAC for learning

PARITY : { f.: {x1}92 2z Hzl- for ¢ € 219! & over uniform distribution.

IEC

 For Boolean-valued functions, CSQ = SQ.

* For real-valued functions, there is an exponential separation between CSQ
and SQ for learning sparse polynomial over product distributions.

Andoni, Panigrahy, Valiant, and Zhang. Learning sparse polynomial functions,
2013



A tool to prove lower bound under CSQ

CSQ dimension

* |Informally: the maximum number of functions that are pairwise almost
orthogonal (in L*(2) inner-product).

CSQdim(F) = sup { | F| : Vf#f € F, [{ftAH I <1IF[, |l =6d) }

FCSHF

almost orthogonal non- vanlshlng norm



From CSQ dimension to query complexity

 Theorem (Blum, Furst, Jackson, Kearns, Mansour, and Rudich, 1994)

Any SQ algorithm that uses tolerance parameter lower bounded by 7 must
make at least (CSQAIm(F) - 72 — 1)/2 queries to learn & with accuracy at
least 7.

* Main proof directions: find a large family of non-vanishing hard functions that
are pairwise almost orthogonal



(General Boolean functions

Intuitive extension of SQ lower bound techniques
leads to a general result



General result
Set up

» Action of a group G on & = {*1}" partition X into ©® = {0, ..., O, } orbits

k

e Dps € R" - vector of probability a random bit string is in some orbit

e Conceptclass Z = {f: {x1}" - {1} withf(g-x) =f(x),Vg € G}




General result

Main result

e Malin result in the section:

1
Any SQ algorithm that learns # to classification error < —

A

with tolerance t©

requires at least 72\\]9@\\52/2 queries

Intuition: O is the effective domain. A uniform distribution over X induces a distribution

P over O. Show hardness of learning over p instead.



Example of general result for Boolean function

By Holder inequality, Hp@H% <27"max|0;|.Ifr = 06(1), then

J
Group 9~ #bits maxo,co, |Or| Query Complexity
Symmetric group on n bits (";ﬁf) =5 (i/'ﬁ) O(/n)
Symmetric group on n X n graphs 2”7'2 — 9~ +nlogn+0(n) Q(20()
Cyclic group on n bits o (2™ /n)

Table 1: Query complexity of learning common invariant Boolean function classes.

Summary: symmetric Boolean classes enjoy savings in SQ lower bound!



Proof sketch

e (1 —n)-pairwise independent function class from: Chen, Gollakota, Klivans,
and Meka. Hardness of noise-free learning for two-hidden-layer neural
networks. NeurlPS 2022. (traced back to Bogdanov)

 Function class & s.t. Law,._Unifee)((f(X), (X)) = Unif(%/) @ Unif(¥/)
with probability 1 — # over draw of x, X' ~ &

» Theorem (informal): If € is (1 — 1)-pairwise independent then any SQ
learner capable of distinguishing & . from ‘'random label’ with tolerance

requires at least 7°/(2#) queries.

 For us, check that 1 = Hp@H% for our symmetric function class.



What about even smaller, more practical invariant classes?

Exponential SQ lower bound for
Boolean graph neural networks

(GNNSs)

Even practical, GNN-realizable Boolean functions are hard to learn



Boolean graph neural networks (GNNs)

o Graph-invariant functions f: {0,1}"*" — {0,1} with input adjacency matrix
of a graph such that f(X) = f(PXP ') for any permutation matrix P.

 Examples:

Message-passing neural networks Graph convolutional networks
| ' Layer-U R
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TTTTTTTTTT K3 ) X C — . /o—a) .
l Layer-2 ® XA 2<\____q N\ 1[ S 9/\/: ‘I>
. s . @ X g & e |
/ 8y ool o X N
PPPPPPPPPP oy XA

Figure credit: Jure Leskovec Stanford CS224W slide Figure credit: Inneke Mayachita



Hardness of learning GNN in the number of nodes
The concept class

. Concept class: 2-hidden-layer GNNs f = £ o (1) with

o 10,1V — R* message passing [f(l)(A)]l- = 120( + 0Al)),1 € [k]

. @ RM - {0,1} a 1-hidden layer ReLU network with k, hidden neurons

 |nput distribution: Erdés-Rényi random graphs with edge probability 1/2.

This is an even smaller class than all Boolean graph-invariant functions (since message-
passing is non-universal)



Hardness of learning GNN in the number of nodes
Hard family of functions in the concept class

» (A (1) counts the number of nodes in the graph with outdegree i € [n + 1}

 Define a parity-like function indexed by S C [n+ 1], b € {0,1}:
gs»(A) =b+ ) ca(i) mod 2

€S

* Define the family of hard function:

Z,=1{8s,|SCn+1],b € {0,1}}



Hardness of learning GNN in the number of nodes

Main result
e Our result:
. - 1
Any SQ algorithm that learns #°, up to classification error < 7

with queries of tolerance 7

requires at least €2 (72 exp(ng(l))) queries.

This smaller class of realistic Boolean functions are still hard to learn



Exponential CSQ lower bound for
real-valued GNNs

Extending exponential lower bound for NN to GNNSs



Hardness of learning GNN in feature dimension

 GNNSs often has both graph data (adjacency matrix) and node features as
INput.

» Node features are iid Gaussian ./, graph distribution & is arbitrary but non-
degenerate.

* Consider the function class of 1-hidden-layer graph convolutional network:

4 apply linear map

A( ?)X




Hardness of learning GNN in feature dimension
Hard functions

 Base on low dimensional subspace enumeration In

Diakonikolas, Kane, Kontonis, and Zarifis. Algorithms and sq lower bounds for
pac learning one-hidden-layer relu networks. COLT 2020

T X, ) with £(Z, €) = 1, 6(A(Y)Z

_ Hard functions g (X, &) = )




Hardness of learning GNN in feature dimension

e Our result:

Foranyd,n = O(1), k = O(d),

any CSQ algorithm that learns the hard class of function to some small
constant error ||f — Al 2 yxe) < €

. . Q(1) . .
requires elthe&%d queries or at least one query with tolerance
d=90 4 27



Main new tool

Graph-invariant Hermite polynomial

. Hy . R™4 | :XHLZHJ((AX)V).
=1

. Acts as orthogonal basis for 1-hidden-layer GNN w.r.t L*(./") inner product.

This works out since action of A is ‘diagonal’ to action of the weight matrix on input X



Other symmetries: frame-
averaged functions

Many complications in deriving lower bound for more general real-
valued symmetric functions



Group averaging

A naive approach to making symmetric function

« Given any (nice) function 2 : & — R and (nice) group G, one can symmetrize:
RIf1(x) == ) flg-x)
gelCG

 Symmetrizing 1-hidden-layer NN:

1
H. =3 f:R™ 5 R AX) = Z To(WT(g7 XN, | W € R™ 2 € RF
\/‘G‘ gelG

e E.g.when X = R", G is the cyclic group, this captures convolutional neural nets (with
large, looped filters)




Family of hard function for group-averaging

Using subspace enumeration from Diakonikolas, Kane, Kontonis, Zarifis, 2020

\ ngG f*(BTg—IX)

C% = { gg: R - R with gg(X) = B e B C R
|G 1Ly

stock hard function in low dimension: R”? —




Exponential CSQ lower bound for group-averaging

e QOur result:

For any 7, d=0(1),k=0®(n), there exists a set of projections &% of size at least
LA G\ such that

any CSQ algorithm that learns ng to some small constant error ||f — h|| 2 yxe) < €

Q(1)
requires either 2" /| G \ queries or at least one query with tolerance

VIGIn 20 G2

« Exponential when | G| = poly(n). E.g. cyclic group.



Frame-averaging

 (Group averaging is expensive

» Canonicalization: e.g. G = & ,, X = R", symmetrize 1 : R" — R by h o sort
« A frame is a function & : | ”;d — 29\@ such that symmetrize an arbitrary
function & by averaging ——— 2 h(g~X) suffices
| F(X)]| 4=
gEF (X)

« E.g. #(X) = G, VX is the group-averaging (Reynold operator)



Frame-averaging 1-hidden-layer MLP

1
H o= f:R>™ 5 R AX) = D alo(WT(g™' X)L, | W e R™ 4 e Rf
\/ ‘ ST'(X)‘ geF(X)

. Eg.f: R™ 5 R, AX) = a'a(W ' (sort(X)))

e If X ~ ', sort(X) has complicated distribution

 Can no longer use Diakonikolas, Kane, Kontonis, Zarifis, 2020 hard functions

Solution: assume sign-invariant frame (e.g. sort by absolute values) and use hard
functions from Goel, Gollakota, Jin, Karmalkar, and Klivans. Superpolynomial lower
bounds for learning one-layer neural networks using gradient descent. ICML 2020



Other results

e SQ vs CSQ separation for learning invariant polynomial

NP hardness of proper learning of GNN via hardness of learning halfspace
with noise

« Lower bound L? norm for all our symmetric hard functions (also nontrivial)



Conclusion

 We formalized the intuition that symmetric function classes are smaller and
thus easier to learn, by showing:

SQ/CSQ EXP;:;ET:::{;‘IJP” RE:E\'Z?:Q g Symmetric function class

SQ depends Boolean general
SQ exponential in nodes| Boolean 2-hidden-layer message-passing NN
CSQ exponential in real 1-hidden-layer GCN

feature dimension

. (polynomial-sized) group-averaged 1-

C3SQ exponential in items real hidden-layer MLP

superpolynomial in sign invariant frame-averaged 1-hidden-
CSQ item real layer MLP

 Developed tools may be of independent interest (e.g. invariant Hermite
polynomial)



Thank you!
Q&A

 Paper link: https://arxiv.org/abs/2401.01869
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