

On the hardness of learning under symmetries presented by Thien Le

based on the ICLR 2024 paper of the same name by Bobak T. Kiani*, L*, Hannah Lawrence*, Stefanie Jegelka, Melanie Weber

Input-domain symmetries Machine learning tasks often specify symmetries in the input space

Object detection in images

Graphs

Figure from Wolfram MathWorld 'Graph automorphism'

Point clouds

Figure from MathWorks 'pointCloud' tutorial

Input-domain symmetries In general, there is a smaller effective domain

- convenient representation
- compatible with "GPU"-learning

- pixel RGB values
- adjacency matrix/Laplacian of graphs
- coordinates in 3D space

 $\mathcal{X} \to \mathcal{X}/G$

effective input domain:

- smaller, succinct representation
- incorporate known inductive bias

Examples

- equivalence classes of rotated images
- graphs
- object in 3D space

Model symmetries

Convolutional neural networks (CNN) + looped filter: translation-invariant

• (Invariant) graph neural network: node-permutation-invariant

Transformer without positional encoding: token-permutation-invariant

Figure credit: Inneke Mayachita

Model symmetries In general, there is a smaller function space containing some ground truth

 \mathcal{X}/G

Does learning become 'easier' under symmetric ground truths?

1. How do we prove this formally? 2. Extending existing techniques?

- Boolean functions: clear application of our intuition

2. Real-valued functions: messier, but can still show lower bounds!

Learning under symmetries Learning a smaller function class

- <u>Concept class</u> $\Lambda \subseteq \{f(\cdot, \theta) : \mathcal{X} \to \mathbb{R} \mid \theta \in \Theta, f(X, \theta) = f(gX, \theta), \forall g \in G\}.$ • <u>Ground truth function</u> $\Lambda \ni h^* : \mathcal{X} \to \mathbb{R}$
- E.g. learning algorithm: given n samples $(x_i, y_i = h^*(x_i))_{i=1}^n$, solve ERM $\min_{\theta \in \Theta} \sum_{i=1}^{\infty} \ell(f(x_i, \theta), y_i)$
- Statistical problem: How many samples do we need to learn up to some error? generalization bounds
- Computational problem: Are there efficient algorithms? NP hardness, PAC learning, SQ learning

PAC learning (L. G. Valiant, 1984) Set up

- Given a <u>concept class</u> $\mathscr{C} \subseteq 2^{\mathscr{X}}$ (set of Boolean-output functions over \mathscr{X}).
- Given a distribution \mathscr{D} over \mathscr{X} and a concept $c \in \mathscr{C}$, samples are drawn from the joint distribution \mathscr{D}_c over $\mathscr{X} \times \{\pm 1\}$.
- Given error parameter $\epsilon \in (0,1)$, confidence parameter $\delta \in (0,1)$.

	Ex
input set	0-1 ad
concept	graphs
distribution	Erdős-

amples

- djacency matrix of graphs
- s with Eulerian cycles
- -Rényi

PAC learning (L. G. Valiant, 1984)

 A (distribution-dependent) PAC-learning algorithm is a function $A := A^m_{\mathcal{E} \otimes \mathscr{C} \otimes \mathscr{D}} : (\mathscr{X} \times \{\pm 1\})^m \to 2^{\mathscr{X}} \text{ such that for any } c \in \mathscr{C},$

 $\mathbb{P}_{Z \sim \mathcal{D}^m}[\operatorname{error}_{\mathcal{C}}(A(Z)) \geq \epsilon] < \delta$, with $\operatorname{error}_{\mathcal{C}}(h) := \mathbb{P}_{X \sim \mathcal{D}}[h(X) \neq c(X)]$

• It is efficient if m is polynomial in $1/\epsilon, 1/\delta, |c|$ and A can be evaluated in polynomial time in its input.

Very general framework of learning, but hard to give proofs

(Correlational) statistical queries (Kearns, 1998) **A natural restriction of PAC**

- Algorithms do not have access to samples but <u>statistics over sample distribution</u>. • Given concept $c: \mathcal{X} \to \mathcal{Y}$ and sample distribution \mathcal{D}_c over $\mathcal{X} \times \mathcal{Y}$, an SQ
- query oracle
 - IN: query $g: \mathcal{X} \times \mathcal{Y} \to [-1,1]$ and tolerance parameter τ
 - OUT: $SQ(g, \tau) \in \mathbb{E}_{(X,Y) \sim \mathcal{D}_c}[g(X,Y)] \pm \tau$
- A CSQ query oracle requires $g(x, y) = f(x) \cdot y$ for some $f : \mathcal{X} \to \mathcal{Y}$
 - $CSQ(g, \tau) \in \langle f, c \rangle_{L^2(\mathcal{D})} \pm \tau$ returns a correlation value

Hardness of learning in the (C)SQ model

- A class \mathscr{F} of functions $f: \mathscr{X} \to \mathscr{Y}$ is hard to learn under the (C)SQ model if there are no algorithm $A := A^m_{e,\tau,\mathscr{F},\mathscr{D}}$ such that for all $c \in \mathscr{F}$,
 - A inputs $m = poly(1/\epsilon, |c|)$ (C)SQ oracle results with tolerance $\tau^{-1} = poly(1/\epsilon, |c|)$, and
 - outputs a hypothesis f such that

$$\|f - c\|_{L^2(\mathcal{D})} \le \epsilon$$

Population gradient descent + noise + square loss \in CSQ Why do we study CSQ model?

- <u>Gradient of the population risk under square loss decomposes as:</u> $\frac{1}{2} \nabla_{\theta} \mathbb{E}_{X,Y}[(f(X,\theta) - Y)^2] = \mathbb{E}_{X,Y}[f(X,\theta) \cdot \nabla_{\theta} f(X,\theta)] - \mathbb{E}_{X,Y}[Y \cdot \nabla_{\theta} f(X,\theta)]$
- (controlled by τ)

independent of Y

CSQ

Adding (Gaussian) <u>noise</u> in each gradient step to simulate error in CSQ oracle

CSQ C SQ C PAC **Relationship between 3 learning models**

- For Boolean-valued functions, CSQ = SQ.
- and SQ for learning sparse polynomial over product distributions.

2013

• There is an <u>exponential separation</u> between SQ and PAC for learning PARITY : $\left\{ f_c : \{\pm 1\}^d \ni z \mapsto \prod_{i \in c} z_i \text{ for } c \in 2^{[d]} \right\}$ over <u>uniform distribution</u>.

For real-valued functions, there is an <u>exponential separation</u> between CSQ

Andoni, Panigrahy, Valiant, and Zhang. Learning sparse polynomial functions,

A tool to prove lower bound under CSQ **CSQ** dimension

 Informally: the <u>maximum number of functions</u> that are pairwise almost orthogonal (in $L^2(\mathcal{D})$) inner-product).

$\mathsf{CSQdim}(\mathscr{F}) := \sup \{ |F| : \forall f \neq f' \in F, |\langle f, f' \rangle | \le 1/|F|, \quad ||f|| = \Theta(1) \}$ FC F almost orthogonal non-vanishing norm

From CSQ dimension to query complexity

Theorem (Blum, Furst, Jackson, Kearns, Mansour, and Rudich, 1994)

least τ .

- Main proof directions: find a large family of non-vanishing hard functions that are pairwise almost orthogonal
- Any SQ algorithm that uses tolerance parameter lower bounded by τ must make at least (CSQdim(\mathscr{F}) $\cdot \tau^2 - 1$)/2 queries to learn \mathscr{F} with accuracy at

General Boolean functions

Intuitive extension of SQ lower bound techniques leads to a general result

General result Set up

- Action of a group G on $\mathscr{X} = \{\pm 1\}^n$ partition \mathscr{X} into $\mathscr{O} = \{\mathcal{O}_1, \dots, \mathcal{O}_k\}$ orbits • $p_{6} \in \mathbb{R}^{k}$ - vector of probability a random bit string is in some orbit
- Concept class $\mathscr{H} = \{f : \{\pm 1\}^n \to \{\pm 1\} \text{ with } f(g \cdot x) = f(x), \forall g \in G\}$

General result Main result

• Main result in the section:

Any SQ algorithm that learns \mathscr{H} to classification error $<\frac{1}{4}$ with tolerance τ requires at least $\tau^2 \|p_0\|_2^{-2}/2$ queries

Intuition: \mathscr{O} is the effective domain. A uniform distribution over \mathscr{X} induces a distribution $p_{\mathcal{O}}$ over \mathcal{O} . Show hardness of learning over $p_{\mathcal{O}}$ instead.

Example of general result for Boolean function

• By Hölder inequality, $\|\mathbf{p}_0\|_2^2 \le 2^{-n}$ i

Group

Symmetric group on n bits

Symmetric group on $n \times n$ graphs

Cyclic group on n bits

Table 1: Query complexity of learning common invariant Boolean function classes.

Summary: symmetric Boolean classes enjoy savings in SQ lower bound!

$$\max_{j} |O_{j}|. \text{ If } \tau = \Theta(1), \text{ then}$$

Proof sketch

- and Meka. Hardness of noise-free learning for two-hidden-layer neural networks. NeurIPS 2022. (traced back to Bogdanov)
 - with probability 1η over draw of $x, x' \sim \mathcal{D}$
 - requires at least $\tau^2/(2\eta)$ queries.
 - For us, check that $\eta = \|p_0\|_2^2$ for our symmetric function class.

• $(1 - \eta)$ -pairwise independent function class from: Chen, Gollakota, Klivans,

• Function class \mathscr{C} s.t. $\operatorname{Law}_{f\sim \operatorname{Unif}(\mathscr{C})}((f(x), f(x'))) = \operatorname{Unif}(\mathscr{Y}) \otimes \operatorname{Unif}(\mathscr{Y})$

• Theorem (informal): If \mathscr{C} is $(1 - \eta)$ -pairwise independent then any SQ learner capable of distinguishing \mathscr{D}_{c} from `random label' with tolerance au

What about even smaller, more practical invariant classes?

Exponential SQ lower bound for Boolean graph neural networks (GNNS)

Even practical, GNN-realizable Boolean functions are hard to learn

Boolean graph neural networks (GNNs)

- of a graph such that $f(\mathbf{X}) = f(\mathbf{P}\mathbf{X}\mathbf{P}^{\mathsf{T}})$ for any permutation matrix **P**.
- Examples:

Message-passing neural networks

Figure credit: Jure Leskovec Stanford CS224W slide

• Graph-invariant functions $f: \{0,1\}^{n \times n} \to \{0,1\}$ with input adjacency matrix

Graph convolutional networks

Figure credit: Inneke Mayachita

Hardness of learning GNN in the number of nodes The concept class

- Concept class: 2-hidden-layer GNNs $f = f^{(2)} \circ f^{(1)}$ with
 - $f^{(1)}: \{0,1\}^{n \times n} \to \mathbb{R}^{k_1}$ message passing $[f^{(1)}(\mathbf{A})]_i = \mathbf{1}_n^\top \sigma(a_i + b_i \mathbf{A} \mathbf{1}_n), i \in [k_1]$
 - $f^{(2)}: \mathbb{R}^{k_1} \rightarrow \{0,1\}$ a 1-hidden layer ReLU network with k_2 hidden neurons
- Input distribution: Erdős-Rényi random graphs with edge probability 1/2.
- $k_1, k_2 \in O(n)$

This is an even smaller class than all Boolean graph-invariant functions (since messagepassing is non-universal)

Hardness of learning GNN in the number of nodes Hard family of functions in the concept class

- $g_{S,b}(\mathbf{A}) = b + \sum c_{\mathbf{A}}(i) \mod 2$ $i \in S$
- $c_{\mathbf{A}}(i)$ counts the <u>number of nodes</u> in the graph with <u>outdegree</u> $i \in [n + 1]$ • Define a <u>parity-like function</u> indexed by $S \subset [n + 1], b \in \{0, 1\}$:
- Define the family of hard function:

$$\mathcal{H}_n = \{g_{S,b} \mid S$$

 $\subset [n+1], b \in \{0,1\}\}$

Hardness of learning GNN in the number of nodes Main result

• Our result:

Any SQ algorithm that learns \mathscr{H}_n up to classification error $<\frac{1}{4}$ with queries of tolerance τ requires at least $\Omega\left(\tau^2 \exp(n^{\Omega(1)})\right)$ queries.

This smaller class of realistic Boolean functions are still hard to learn

Exponential CSQ lower bound for real-valued GNNs

Extending exponential lower bound for NN to GNNs

Hardness of learning GNN in feature dimension

- input.
- degenerate.

GNNs often has both graph data (adjacency matrix) and node features as

• Node features are iid Gaussian \mathcal{N} , graph distribution \mathscr{E} is arbitrary but non-

Hardness of learning GNN in feature dimension Hard functions

- Base on low dimensional subspace enumeration in Diakonikolas, Kane, Kontonis, and Zarifis. Algorithms and sq lower bounds for pac learning one-hidden-layer relu networks. COLT 2020

Hardness of learning GNN in feature dimension

• Our result:

For any $d, n = \Theta(1), k = \Theta(d),$

any CSQ algorithm that learns the hard class of function to some small constant error $||f - h||_{L^2(\mathcal{N} \times \mathscr{C})} \leq \epsilon$

requires either $2^{d^{\Omega(1)}}$ queries or at least one query with tolerance $d^{-\Omega(k)} + 2^{-d^{\Omega(1)}}$

Main new tool **Graph-invariant Hermite polynomial**

•
$$H_J^{\mathbf{A}}: \mathbb{R}^{n \times d} \to \mathbb{R}: \mathbf{X} \mapsto \frac{1}{\sqrt{n}} \sum_{v=1}^{n} H_{v=1}^{n}$$

 $H_J\left(\left(\mathbf{AX}\right)_{v}\right).$

• Acts as orthogonal basis for 1-hidden-layer GNN w.r.t $L^2(\mathcal{N})$ inner product.

This works out since action of A is 'diagonal' to action of the weight matrix on input X

Other symmetries: frameaveraged functions

Many complications in deriving lower bound for more general realvalued symmetric functions

|-

Group averaging A naive approach to making symmetric function

• Given any (nice) function $h: \mathcal{X} \to \mathbb{R}$ and (nice) group G, one can symmetrize:

R[f](x)

• Symmetrizing 1-hidden-layer NN:

$$\mathscr{H}_{\mathbf{G}} := \left\{ f : \mathbb{R}^{n \times d} \to \mathbb{R}, f(\mathbf{X}) = \frac{1}{\sqrt{|\mathbf{G}|}} \right\}$$

large, looped filters)

$$:= \sum_{g \in G} f(g \cdot x)$$

$-\sum_{g\in G} \mathbf{a}^{\mathsf{T}} \sigma(\mathbf{W}^{\mathsf{T}}(g^{-1}\mathbf{X}))\mathbf{1}_d \mid \mathbf{W} \in \mathbb{R}^{n \times k}, \mathbf{a} \in \mathbb{R}^k \bigg\},\$

E.g. when $\mathcal{X} = \mathbb{R}^n$, G is the cyclic group, this captures convolutional neural nets (with

Family of hard function for group-averaging Using subspace enumeration from Diakonikolas, Kane, Kontonis, Zarifis, 2020

Exponential CSQ lower bound for group-averaging

Our result:

For any $n, d = \Theta(1), k = \Theta(n)$, there exists a set of projections \mathscr{B} of size at least $2^{\Omega(d^{\Omega(1)})} / |\mathbf{G}|^2$, such that

any CSQ algorithm that learns $C_G^{\mathscr{B}}$ to some small constant error $\|f - h\|_{L^2(\mathscr{N} \times \mathscr{E})} \leq \epsilon$

requires either $2^{n^{\Omega(1)}} / |G|^2$ queries or at least one query with tolerance $\sqrt{|G|} n^{-\Omega(k)} + |G| 2^{-n^{\Omega(1)}}$.

• Exponential when |G| = poly(n). E.g. cyclic group.

Frame-averaging

- Group averaging is expensive
- Canonicalization: e.g. $G = \mathcal{S}_n, \mathcal{X} = \mathbb{R}^n$, symmetrize $h : \mathbb{R}^n \to \mathbb{R}$ by $h \circ \text{sort}$
- A frame is a function $\mathscr{F} : \mathbb{R}^{n \times d} \to 2^G \setminus \mathscr{O}$ such that symmetrize an arbitrary function h by averaging $\frac{1}{|\mathscr{F}(\mathbf{X})|} \sum_{g \in \mathscr{F}(\mathbf{X})} h(g^{-1}\mathbf{X})$ suffices
- E.g. $\mathcal{F}(\mathbf{X}) = G, \forall \mathbf{X}$ is the group-averaging (Reynold operator)

Frame-averaging 1-hidden-layer MLP

$$\mathscr{H}_{\mathscr{F}} := \left\{ f : \mathbb{R}^{n \times d} \to \mathbb{R}, f(\mathbf{X}) = \frac{1}{\sqrt{|\mathscr{F}(\mathbf{X})|}} \right\}$$

- E.g. $f: \mathbb{R}^{n \times 1} \to \mathbb{R}, f(\mathbf{X}) = \mathbf{a}^{\mathsf{T}} \sigma(\mathbf{W}^{\mathsf{T}}(\mathsf{sort}(\mathbf{X})))$
- If $\mathbf{X} \sim \mathcal{N}$, sort(\mathbf{X}) has complicated distribution
- Can no longer use Diakonikolas, Kane, Kontonis, Zarifis, 2020 hard functions

$= \sum_{g \in \mathscr{F}(\mathbf{X})} \mathbf{a}^{\mathsf{T}} \sigma(\mathbf{W}^{\mathsf{T}}(g^{-1}\mathbf{X})) \mathbf{1}_d \mid \mathbf{W} \in \mathbb{R}^{n \times k}, \mathbf{a} \in \mathbb{R}^k \right\}$

Solution: assume sign-invariant frame (e.g. sort by absolute values) and use hard functions from Goel, Gollakota, Jin, Karmalkar, and Klivans. Superpolynomial lower bounds for learning one-layer neural networks using gradient descent. ICML 2020

Other results

- SQ vs CSQ separation for learning invariant polynomial
- NP hardness of proper learning of GNN via hardness of learning halfspace with noise
- Lower bound L^2 norm for all our symmetric hard functions (also nontrivial)

Conclusion

thus easier to learn, by showing:

SQ/CSQ	Exponential/Super polynomial	Boolean/ Real-valued	Symmetric function class
SQ	depends	Boolean	general
SQ	exponential in nodes	Boolean	2-hidden-layer message-passing NN
CSQ	exponential in feature dimension	real	1-hidden-layer GCN
CSQ	exponential in items	real	(polynomial-sized) group-averaged 1- hidden-layer MLP
CSQ	superpolynomial in item	real	sign invariant frame-averaged 1-hidden- layer MLP

• Developed tools may be of independent interest (e.g. invariant Hermite polynomial)

We formalized the intuition that symmetric function classes are <u>smaller</u> and

Thank you! Q&A

- Paper link: <u>https://arxiv.org/abs/2401.01869</u>
 - Hannah Lawrence*, Stefanie Jegelka, Melanie Weber.

'On the hardness of learning under symmetries' - Bobak T. Kiani*, L.*,

