

On the hardness of learning under symmetries presented by Thien Le

based on the ICLR 2024 paper of the same name by Bobak T. Kiani*, L*, Hannah Lawrence*, Stefanie Jegelka, Melanie Weber

Input-domain symmetries Machine learning tasks often specify symmetries in the input space

• Object detection in

• Point clouds Figure from MathWorks 'pointCloud' tutorial

• Graphs

Figure from Wolfram MathWorld 'Graph automorphism'

Input-domain symmetries In general, there is a smaller effective domain

- convenient representation
- compatible with "GPU"-learning

-
- adjacency matrix/Laplacian of graphs $-$ graphs $-$ graphs
- coordinates in 3D space $-$ object in 3D space

 $\mathscr{X} \rightarrow \mathscr{X}/G$

- smaller, succinct representation
- incorporate known inductive bias

effective input domain:

Examples

- pixel RGB values $-$ equivalence classes of rotated images
	-
	-

Model symmetries

• Convolutional neural networks (CNN) + looped filter: translation-invariant

• (Invariant) graph neural network: node-permutation-invariant

• Transformer without positional encoding: token-permutation-invariant

Figure credit: Inneke Mayachita

Model symmetries In general, there is a smaller function space containing some ground truth

 \mathscr{X}/G

Does learning become 'easier' under symmetric ground truths?

1. How do we prove this formally? 2. Extending existing techniques?

Spoiler:

- 1. Boolean functions: clear application of our intuition
-

2. Real-valued functions: messier, but can still show lower bounds!

Learning under symmetries Learning a smaller function class

-
- Concept class $\Lambda \subseteq \{f(\cdot,\theta): \mathcal{X} \to \mathbb{R} \mid \theta \in \Theta, f(X,\theta) = f(gX,\theta), \forall g \in G\}.$ • Ground truth function $\Lambda \ni h^* : \mathcal{X} \to \mathbb{R}$
- E.g. learning algorithm: given *n* samples $(x_i, y_i = h^*(x_i))_{i=1}^n$, solve ERM *n i*=1 min *θ*∈Θ *n* ∑ *i*=1 $\mathscr{C}(f(x_i, \theta), y_i)$
- Statistical problem: How many samples do we need to learn up to some error? generalization bounds
- Computational problem: Are there efficient algorithms? NP hardness, PAC learning, SQ learning

PAC learning (L. G. Valiant, 1984) Set up

- Given a concept class $\mathscr{C} \subseteq 2^\mathscr{X}$ (set of Boolean-output functions over \mathscr{X}).
- Given a <u>distribution</u> $\mathscr D$ over $\mathscr X$ and a <u>concept</u> $c \in \mathscr C$, samples are drawn from the joint distribution \mathscr{D}_c over $\mathscr{X} \times \{\pm 1\}$.
- Given error parameter $\epsilon \in (0,1)$, confidence parameter $\delta \in (0,1)$.

Examples

- liacency matrix of graphs
- s with Eulerian cycles
- -Rényi

PAC learning (L. G. Valiant, 1984)

• A (distribution-dependent) PAC-learning algorithm is a function $A := A^m_{\epsilon}$ $\epsilon, \delta, \mathscr{C},$

 $\mathbb{P}_{Z\sim\mathscr{D}_c^m}[\text{error}_c(A(Z))\geq \epsilon] < \delta$, with $\text{error}_c(h) := \mathbb{P}_{X\sim\mathscr{D}}[h(X) \neq c(X)]$

• It is efficient if m is polynomial in $1/\epsilon, 1/\delta, |c|$ and A can be evaluated in polynomial time in its input.

Very general framework of learning, but hard to give proofs

such that for any $c \in \mathscr{C}$, : $({\mathscr{X}} \times \{\pm 1\})^m \to 2^{\mathscr{X}}$ such that for any $c \in$

(Correlational) statistical queries (Kearns, 1998) A natural restriction of PAC

- Algorithms do not have access to samples but **statistics over sample distribution**.
- Given concept $c: \mathscr{X} \to \mathscr{Y}$ and sample distribution \mathscr{D}_c over $\mathscr{X} \times \mathscr{Y}$, an SQ query oracle
	- IN: query $g:\mathscr{X} \times \mathscr{Y} \to [-1,1]$ and tolerance parameter τ
	- OUT: $SQ(g, \tau) \in \mathbb{E}_{(X,Y)\sim \mathcal{D}_c}$ $[g(X, Y)] \pm \tau$
- A CSQ query oracle requires $g(x, y) = f(x) \cdot y$ for some $f: \mathcal{X} \rightarrow$
	- CSQ $(g, \tau) \in \langle f, c \rangle_{L^2(\mathcal{D})} \pm \tau$ returns a correlation value

Hardness of learning in the (C)SQ model

- A class $\mathscr F$ of functions $f\colon \mathscr X\to \mathscr Y$ is hard to learn under the (C)SQ model if there are no algorithm $A:=A_{c\,\tau\,\,\widetilde{\,\,\,}\, \infty}^m$ such that for all $c\in\mathscr{F},$ $A := A^m_{\epsilon}$ *ϵ*,*τ*,ℱ, *c* ∈ ℱ
	- A inputs $m = \text{poly}(1/\epsilon, |c|)$ (C)SQ oracle results with tolerance , and $\tau^{-1} = \text{poly}(1/\epsilon, |c|)$
	- outputs a hypothesis f such that $||f c||_{L^2(\mathcal{D})} \leq \epsilon$

$$
\|f - c\|_{L^2(\mathcal{D})} \leq \epsilon
$$

Population gradient descent + noise + square loss ∈ **CSQ Why do we study CSQ model?**

- Gradient of the population risk under square loss decomposes as: 1 2 $\nabla_{\theta} \mathbb{E}_{X,Y}[(f(X, \theta) - Y)]$ 2 $J = \mathbb{E}_{X,Y}[f(X, \theta) \cdot \nabla_{\theta}f(X, \theta)] - \mathbb{E}_{X,Y}[Y \cdot \nabla_{\theta}f(X, \theta)]$
- (controlled by τ)

independent of Y

CSQ

• Adding (Gaussian) noise in each gradient step to simulate error in CSQ oracle

CSQ ⊂ **SQ** ⊂ **PAC Relationship between 3 learning models**

- There is an exponential separation between SQ and PAC for learning $\frac{c}{c}$: { ± 1 }^d \Rightarrow *z* \mapsto \prod *i*∈*c*
- For Boolean-valued functions, $CSQ = SQ$.
- and SQ for learning sparse polynomial over product distributions.

Andoni, Panigrahy, Valiant, and Zhang. Learning sparse polynomial functions,

2013

$\textsf{PARITY}: \left\{f_c: \{\pm 1\}^d \ni z \mapsto \prod z_i \text{ for } c \in 2^{ \lfloor d \rfloor} \right\} \text{ over uniform distribution.}$ z_i for $c \in 2^{[d]}$ \int

• For real-valued functions, there is an exponential separation between CSQ

A tool to prove lower bound under CSQ CSQ dimension

• Informally: the <u>maximum number of functions</u> that are pairwise almost orthogonal (in $L^2(\mathscr{D})$ inner-product).

$CSQdim(\mathcal{F}) := \sup \{ |F| : \forall f \neq f' \in F, |\langle f, f' \rangle| \leq 1/|F|, \quad ||f|| = \Theta(1) \}$ *F*⊂ℱ almost orthogonal non-vanishing norm

}

From CSQ dimension to query complexity

• Theorem (Blum, Furst, Jackson, Kearns, Mansour, and Rudich, 1994)

least τ .

- Main proof directions: find a large family of non-vanishing hard functions that are pairwise almost orthogonal
- Any SQ algorithm that uses tolerance parameter lower bounded by τ must make at least $(\mathsf{CSQdim}(\mathscr{F})\cdot \tau^2-1)/2$ queries to learn $\mathscr F$ with accuracy at $(CSGdim(\mathcal{F}) \cdot \tau^2 - 1)/2$ queries to learn $\mathcal F$

General Boolean functions

Intuitive extension of SQ lower bound techniques leads to a general result

General result Set up

- Action of a <u>group</u> G on $\mathscr{X}=\{\pm 1\}^n$ <u>partition</u> \mathscr{X} into $\mathscr{O}=\{\bm{O}_1,...,\bm{O}_k\}$ <u>orbits</u> • - vector of *probability a random bit string is in some orbit p* ∈ ℝ*^k G* on $\mathcal{X} = {\pm 1}^n$ partition \mathcal{X} into $\mathcal{O} = {\{O_1, ..., O_k\}}$
-
- Concept class $\mathcal{H} = \{f : \{\pm 1\}^n \to \{\pm 1\} \text{ with } f(g \cdot x) = f(x), \forall g \in G\}$

General result Main result

• Main result in the section:

Any SQ algorithm that learns $\mathscr H$ to classification error $\,<\,$ with tolerance *τ* requires at least $\tau^2 ||p_6||_2^2/2$ queries τ^2 || p_6 || $^{-2}$ $\frac{2}{2}$ ²/2

Intuition: $\mathcal O$ is the effective domain. A uniform distribution over $\mathscr X$ induces a distribution p_{\odot} over \odot . Show hardness of learning over p_{\odot} instead.

1 4

Example of general result for Boolean function

• By Hölder inequality, $||p_{\mathcal{O}}||_2^2 \leq 2^{-n} \max_i |O_i|$. If $\tau = \Theta(1)$, then

Group

Symmetric group on n bits

Symmetric group on $n \times n$ graphs

Cyclic group on n bits

Table 1: Query complexity of learning common invariant Boolean function classes.

$$
\max_{j} |O_j|
$$
. If $\tau = \Theta(1)$, then

Summary: symmetric Boolean classes enjoy savings in SQ lower bound!

Proof sketch

- *and Meka. Hardness of noise-free learning for two-hidden-layer neural networks. NeurIPS 2022. (traced back to Bogdanov)*
	- with probability 1η over draw of $x, x' \thicksim$
	- learner capable of distinguishing \mathscr{D}_c from `random label' with tolerance τ requires at least $\tau^2/(2\eta)$ queries. *τ*2/(2*η*)
	- For us, check that $\eta = ||p_{\mathcal{O}}||_2^2$ for our symmetric function class. 2

• $(1 - η)$ -pairwise independent function class from: *Chen, Gollakota, Klivans,*

• Function class $\mathscr C$ s.t. Law_{$f \sim$ Unif $(\mathscr C)(f(x), f(x'))$ = Unif $(\mathscr Y)$ ⊗ Unif $(\mathscr Y)$}

• Theorem (informal): If $\mathscr C$ is $(1 - \eta)$ -pairwise independent then any SQ

Exponential SQ lower bound for Boolean graph neural networks (GNNs)

Even practical, GNN-realizable Boolean functions are hard to learn

What about even smaller, more practical invariant classes?

Boolean graph neural networks (GNNs)

- of a graph such that $f(X) = f(PXP^{\perp})$ for any permutation matrix P.
- Examples:

Message-passing neural networks

Figure credit: Jure Leskovec Stanford CS224W slide

• Graph-invariant functions $f: \{0,1\}^{n\times n} \rightarrow \{0,1\}$ with input adjacency matrix $f(X) = f(PXP^T)$ for any permutation matrix P

Graph convolutional networks

Figure credit: Inneke Mayachita

Hardness of learning GNN in the number of nodes The concept class

- Concept class: 2-hidden-layer GNNs $f = f^{(2)} \circ f^{(1)}$ with
	- $f^{(1)}: \{0,1\}^{n \times n} \to \mathbb{R}^{k_1}$ message passing $[f^{(1)}(A)]_i = \mathbf{1}_n^{\top} \sigma(a_i + b_i A \mathbf{1}_n), i \in [k_1]$
	- $f^{(2)}:\mathbb{R}^{k_1}\rightarrow\{0,1\}$ a 1-hidden layer ReLU network with k_2 hidden neurons $f^{(2)}:\mathbb{R}^{k_1}\rightarrow\{0,1\}$ a 1-hidden layer ReLU network with k_2
- Input distribution: Erdős-Rényi random graphs with edge probability 1/2.
- $k_1, k_2 \in O(n)$

This is an even smaller class than all Boolean graph-invariant functions (since messagepassing is non-universal)

Hardness of learning GNN in the number of nodes Hard family of functions in the concept class

- $c_{\mathbf{A}}(i)$ counts the <u>number of nodes</u> in the graph with <u>outdegree</u> $i \in [n + 1]$ $g_{S,b}(A) = b + \sum c_A(i) \mod 2$ *i*∈*S*
- Define a parity-like function indexed by $S \subset [n+1], b \in \{0,1\}$:
-
- Define the family of hard function:

$$
\mathcal{H}_n = \{g_{S,b} | S
$$

 \subset $[n+1], b \in \{0,1\}\}$

Hardness of learning GNN in the number of nodes Main result

• Our result:

Any SQ algorithm that learns ${\mathscr H}_n$ up to classification error $\,<\,$ with queries of tolerance *τ* requires at least $\Omega\left(\tau^2\exp(n^{22(1)})\right)$ queries. $\Omega\left(\tau^2 \exp(n^{\Omega(1)})\right)$

1 4

This smaller class of realistic Boolean functions are still hard to learn

Exponential CSQ lower bound for real-valued GNNs

Extending exponential lower bound for NN to GNNs

Hardness of learning GNN in feature dimension

• GNNs often has both graph data (adjacency matrix) and node features as

• Node features are iid Gaussian $\mathscr N$, graph distribution $\mathscr E$ is arbitrary but non-

- input.
- degenerate.

Hardness of learning GNN in feature dimension Hard functions

- Base on low dimensional subspace enumeration in *Diakonikolas, Kane, Kontonis, and Zarifis. Algorithms and sq lower bounds for pac learning one-hidden-layer relu networks. COLT 2020*
- •
• Hard functions $g_n^{\mathbf{B}}(\mathbf{X}, \mathcal{G}) = \frac{J_n(\mathbf{X}, \mathcal{G})}{\mathbb{E}[f_n]}\mathbf{W}$ with $\frac{\mathbf{B}}{n}(\mathbf{X}, \mathcal{G}) =$ f_n (**XB**, \mathscr{G})

Hardness of learning GNN in feature dimension

any CSQ algorithm that learns the hard class of function to some small $\text{constant error } ||f - h||_{L^2(\mathcal{N} \times \mathcal{E})} \leq \epsilon$

requires either 2^{a} queries or at least one query with tolerance $2^{d^{\Omega(1)}}$ $d^{-\Omega(k)} + 2^{-d^{\Omega(1)}}$

• Our result:

For any $d, n = \Theta(1), k = \Theta(d),$

Main new tool Graph-invariant Hermite polynomial

$$
\bullet \quad H_J^{\mathbf{A}} : \mathbb{R}^{n \times d} \to \mathbb{R} : \mathbf{X} \mapsto \frac{1}{\sqrt{n}} \sum_{\nu=1}^n I
$$

 $H_J\left(\left(\mathbf{AX}\right)_\nu\right)$.

• Acts as orthogonal basis for 1-hidden-layer GNN w.r.t $L^2(\mathscr{N})$ inner product.

This works out since action of **A** is 'diagonal' to action of the weight matrix on input **X**

Other symmetries: frameaveraged functions

Many complications in deriving lower bound for more general realvalued symmetric functions

Group averaging A naive approach to making symmetric function

• Given any (nice) function $h: \mathscr{X} \to \mathbb{R}$ and (nice) group G , one can symmetrize:

 $R[f](x)$

• E.g. when $\mathscr{X} = \mathbb{R}^n$, G is the cyclic group, this captures convolutional neural nets (with large, looped filters)

• Symmetrizing 1-hidden-layer NN:

g∈*G* $\mathbf{a}^{\mathsf{T}}\sigma(\mathbf{W}^{\mathsf{T}}(g^{-1}\mathbf{X}))\mathbf{1}_d \mid \mathbf{W} \in \mathbb{R}^{n \times k}, \mathbf{a} \in \mathbb{R}^k \rangle,$

$$
:= \sum_{g\in G} f(g \cdot x)
$$

$$
\mathcal{H}_G := \left\{ f : \mathbb{R}^{n \times d} \to \mathbb{R}, f(\mathbf{X}) = \frac{1}{\sqrt{|G|}} \sum_{g \in G}
$$

Family of hard function for group-averaging Using subspace enumeration from Diakonikolas, Kane, Kontonis, Zarifis, 2020

Exponential CSQ lower bound for group-averaging

• Our result:

, such that $n,d=\Theta(1), k=\Theta(n),$ there exists a set of projections ${\mathscr B}$ $2^{\Omega(d^{\Omega(1)})}$ /|*G*| 2

any CSQ algorithm that learns $C_G^{\mathscr{B}}$ to some small constant error $\frac{dS}{dG}$ to some small constant error $\left\|f-h\right\|_{L^2(\mathcal{N}\times\mathcal{E})}\leq \epsilon$

requires either $2^{n+\gamma}/|G|^2$ queries or at least one query with tolerance . $2^{n^{\Omega(1)}}/|G|$ 2 $\boxed{G \mid n^{-\Omega(k)} + |G|}$ 2^{−n²⁽¹⁾}

• Exponential when $|G| = \text{poly}(n)$. E.g. cyclic group.

For any $n,d=\Theta(1), k=\Theta(n),$ there exists a set of projections ${\mathscr B}$ of size at least

Frame-averaging

- Group averaging is expensive
- Canonicalization: e.g. $G = {\mathcal S}_n, {\mathcal X} = {\mathbb R}^n$, symmetrize $h: {\mathbb R}^n \to {\mathbb R}$ by $\mathbb{R}^n=\mathbb{R}^n,$ symmetrize $h:\mathbb{R}^n\rightarrow \mathbb{R}$ by h \circ sort
- A frame is a function $\mathscr{F}: \mathbb{R}^{n \times d} \to 2^G \boxtimes$ such that symmetrize an arbitrary function h by averaging $\frac{1}{\sqrt{2\pi}}$ suffices $\mathscr{F}: \mathbb{R}^{n \times d} \rightarrow 2^G \backslash \varnothing$ *h* 1 $|\mathcal{F}(\text{X})|$ *g*∈ℱ(**X**) *h*(*g*−¹ **X**)
- E.g. $\mathcal{F}(X) = G, \forall X$ is the group-averaging (Reynold operator)

Frame-averaging 1-hidden-layer MLP

- E.g. *f* : ℝ*n*×¹ → ℝ, *f*(**X**) = **a**⊤*σ*(**W**⊤(sort(**X**)))
- If $X \sim N$, sort(X) has complicated distribution
- Can no longer use Diakonikolas, Kane, Kontonis, Zarifis, 2020 hard functions

g∈ℱ(**X**) $\mathbf{a}^{\mathsf{T}}\sigma(\mathbf{W}^{\mathsf{T}}(\mathbf{g}^{-1}\mathbf{X}))\mathbf{1}_d \mid \mathbf{W} \in \mathbb{R}^{n \times k}, \mathbf{a} \in \mathbb{R}^k$

$$
\mathcal{H}_{\mathcal{F}} := \left\{ f : \mathbb{R}^{n \times d} \to \mathbb{R}, f(\mathbf{X}) = \frac{1}{\sqrt{|\mathcal{F}(\mathbf{X})|}} \sum_{g \in \mathcal{F}(\mathbf{X})} \mathbb{I}_{g \in \mathcal{F}(\mathbf{X})} \right\}
$$

Solution: assume sign-invariant frame (e.g. sort by absolute values) and use hard functions from *Goel, Gollakota, Jin, Karmalkar, and Klivans. Superpolynomial lower bounds for learning one-layer neural networks using gradient descent. ICML 2020*

Other results

- SQ vs CSQ separation for learning invariant polynomial
- NP hardness of proper learning of GNN via hardness of learning halfspace with noise
- Lower bound L^2 norm for all our symmetric hard functions (also nontrivial)

Conclusion

thus easier to learn, by showing:

• Developed tools may be of independent interest (e.g. invariant Hermite polynomial)

• We formalized the intuition that symmetric function classes are smaller and

Thank you! Q&A

- Paper link:<https://arxiv.org/abs/2401.01869>
	- Hannah Lawrence*, Stefanie Jegelka, Melanie Weber.

• 'On the hardness of learning under symmetries' - Bobak T. Kiani*, L.*,

