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Input-domain symmetries
Machine learning tasks often specify symmetries in the input space

• Object detection in 
images ≡ ≡

• Graphs

Figure from Wolfram MathWorld ‘Graph automorphism’

• Point clouds Figure from MathWorks ‘pointCloud’ tutorial



Input-domain symmetries
In general, there is a smaller effective domain

𝒳 → 𝒳/G

input to general-purpose functions:

- convenient representation

- compatible with “GPU”-learning

effective input domain:

- smaller, succinct representation 

- incorporate known inductive bias

Examples
- pixel RGB values - equivalence classes of rotated images

- adjacency matrix/Laplacian of graphs - graphs


- coordinates in 3D space - object in 3D space



Model symmetries
• Convolutional neural networks (CNN) + looped filter: translation-invariant

• (Invariant) graph neural network: node-permutation-invariant

• Transformer without positional encoding: token-permutation-invariant

Figure credit: Inneke Mayachita



Model symmetries
In general, there is a smaller function space containing some ground truth

𝒳 𝒳/G

𝒴

general purpose neural network ground truth functions &

invariant neural networks

input to 
model 

labels/
regression 

values



Does learning become ‘easier’ 
under symmetric ground truths?

1. How do we prove this formally? 

2. Extending existing techniques?

Spoiler: 
1. Boolean functions: clear application of our intuition

2. Real-valued functions: messier, but can still show lower bounds!   



Learning under symmetries
Learning a smaller function class

• Concept class .


• Ground truth function 


• E.g. learning algorithm: given  samples , solve ERM 

Λ ⊆ {f( ⋅ , θ) : 𝒳 → ℝ |θ ∈ Θ, f(X, θ) = f(gX, θ), ∀g ∈ G}

Λ ∋ h* : 𝒳 → ℝ

n (xi, yi = h*(xi))n
i=1

min
θ∈Θ

n

∑
i=1

ℓ( f(xi, θ), yi)

Statistical problem: How many samples do we need to learn up to some error? - 
generalization bounds

Computational problem: Are there efficient algorithms? - NP hardness, PAC learning, SQ 
learning



PAC learning (L. G. Valiant, 1984)
Set up

• Given a concept class  (set of Boolean-output functions over ).


• Given a distribution  over  and a concept , samples are drawn 
from the joint distribution  over .


• Given error parameter , confidence parameter .

𝒞 ⊆ 2𝒳 𝒳

𝒟 𝒳 c ∈ 𝒞
𝒟c 𝒳 × {±1}

ϵ ∈ (0,1) δ ∈ (0,1)

Examples
input set 0-1 adjacency matrix of graphs

concept graphs with Eulerian cycles

distribution Erdős-Rényi



PAC learning (L. G. Valiant, 1984)

• A (distribution-dependent) PAC-learning algorithm is a function 
 such that for any , 


, with 


• It is efficient if  is polynomial in and  can be evaluated in 
polynomial time in its input.

A := Am
ϵ,δ,𝒞,𝒟 : (𝒳 × {±1})m → 2𝒳 c ∈ 𝒞

ℙZ∼𝒟m
c
[errorc(A(Z)) ≥ ϵ] < δ errorc(h) := ℙX∼𝒟[h(X) ≠ c(X)]

m 1/ϵ,1/δ, |c | A

Very general framework of learning, but hard to give proofs



(Correlational) statistical queries (Kearns, 1998) 
A natural restriction of PAC

• Algorithms do not have access to samples but statistics over sample distribution.


• Given concept  and sample distribution  over , an SQ 
query oracle 


• IN: query  and tolerance parameter  


• OUT: 


• A CSQ query oracle requires  for some 


•  returns a correlation value

c : 𝒳 → 𝒴 𝒟c 𝒳 × 𝒴

g : 𝒳 × 𝒴 → [−1,1] τ

SQ(g, τ) ∈ 𝔼(X,Y)∼𝒟c
[g(X, Y)] ± τ

g(x, y) = f(x) ⋅ y f : 𝒳 → 𝒴

CSQ(g, τ) ∈ ⟨ f, c⟩L2(𝒟) ± τ



Hardness of learning in the (C)SQ model 

• A class  of functions  is hard to learn under the (C)SQ model if 
there are no algorithm  such that for all ,


•  inputs  (C)SQ oracle results with tolerance 
, and 


• outputs a hypothesis  such that 

ℱ f : 𝒳 → 𝒴
A := Am

ϵ,τ,ℱ,𝒟 c ∈ ℱ

A m = poly(1/ϵ, |c | )
τ−1 = poly(1/ϵ, |c | )

f ∥f − c∥L2(𝒟) ≤ ϵ



Population gradient descent + noise + square loss  CSQ ∈
Why do we study CSQ model? 

• Gradient of the population risk under square loss decomposes as:





• Adding (Gaussian) noise in each gradient step to simulate error in CSQ oracle 
(controlled by )

1
2

∇θ𝔼X,Y[( f(X, θ) − Y)2] = 𝔼X,Y[ f(X, θ) ⋅ ∇θ f(X, θ)]

independent of Y

− 𝔼X,Y[Y ⋅ ∇θ f(X, θ)]

CSQ

τ



CSQ  SQ  PAC⊂ ⊂
Relationship between 3 learning models

• There is an exponential separation between SQ and PAC for learning

 over uniform distribution.


• For Boolean-valued functions, CSQ  SQ.


• For real-valued functions, there is an exponential separation between CSQ 
and SQ for learning sparse polynomial over product distributions. 


Andoni, Panigrahy, Valiant, and Zhang. Learning sparse polynomial functions, 
2013

PARITY : {fc : {±1}d ∋ z ↦ ∏
i∈c

zi for c ∈ 2[d]}
=



A tool to prove lower bound under CSQ
CSQ dimension 

• Informally: the maximum number of functions that are pairwise almost 
orthogonal (in  inner-product). 
L2(𝒟)

CSQdim(ℱ) := sup
F⊂ℱ

{ |F | : ∀f ≠ f′￼ ∈ F, |⟨ f, f′￼⟩ | ≤ 1/ |F |

almost orthogonal

, ∥f∥ = Θ(1)

non-vanishing norm

}



From CSQ dimension to query complexity

• Theorem (Blum, Furst, Jackson, Kearns, Mansour, and Rudich, 1994)


Any SQ algorithm that uses tolerance parameter lower bounded by  must 
make at least  queries to learn  with accuracy at 
least . 


• Main proof directions: find a large family of non-vanishing hard functions that 
are pairwise almost orthogonal

τ
(CSQdim(ℱ) ⋅ τ2 − 1)/2 ℱ

τ



General Boolean functions

Intuitive extension of SQ lower bound techniques 
leads to a general result



General result
Set up

• Action of a group  on  partition  into  orbits


•  - vector of probability a random bit string is in some orbit


• Concept class 

G 𝒳 = {±1}n 𝒳 𝒪 = {O1, …, Ok}

p𝒪 ∈ ℝk

ℋ = {f : {±1}n → {±1} with f(g ⋅ x) = f(x), ∀g ∈ G}



General result
Main result

• Main result in the section:


Any SQ algorithm that learns  to classification error  


with tolerance  


requires at least  queries

ℋ <
1
4

τ

τ2∥p𝒪∥−2
2 /2

Intuition:  is the effective domain. A uniform distribution over  induces a distribution 
 over . Show hardness of learning over  instead.

𝒪 𝒳
p𝒪 𝒪 p𝒪



Example of general result for Boolean function

• By Hölder inequality, . If , then∥p𝒪∥2
2 ≤ 2−n max

j
|Oj | τ = Θ(1)

Summary: symmetric Boolean classes enjoy savings in SQ lower bound!



Proof sketch
• -pairwise independent function class from: Chen, Gollakota, Klivans, 

and Meka. Hardness of noise-free learning for two-hidden-layer neural 
networks. NeurIPS 2022. (traced back to Bogdanov)


• Function class  s.t.  
with probability  over draw of 


• Theorem (informal): If  is -pairwise independent then any SQ 
learner capable of distinguishing  from `random label’ with tolerance  
requires at least  queries. 


• For us, check that  for our symmetric function class. 

(1 − η)

𝒞 Lawf∼Unif(𝒞)(( f(x), f(x′￼))) = Unif(𝒴) ⊗ Unif(𝒴)
1 − η x, x′￼ ∼ 𝒟

𝒞 (1 − η)
𝒟c τ

τ2/(2η)

η = ∥p𝒪∥2
2



Exponential SQ lower bound for 
Boolean graph neural networks 
(GNNs)

Even practical, GNN-realizable Boolean functions are hard to learn

What about even smaller, more practical invariant classes?



Boolean graph neural networks (GNNs)

• Graph-invariant functions   with input adjacency matrix 
of a graph such that  for any permutation matrix . 


• Examples:

f : {0,1}n×n → {0,1}
f(X) = f(PXP⊤) P

Message-passing neural networks

Figure credit: Jure Leskovec Stanford CS224W slide

Graph convolutional networks

Figure credit: Inneke Mayachita



Hardness of learning GNN in the number of nodes
The concept class 

• Concept class: 2-hidden-layer GNNs  with


•  message passing 


•  a 1-hidden layer ReLU network with  hidden neurons


• Input distribution: Erdős-Rényi random graphs with edge probability 1/2. 


• 


f = f (2) ∘ f (1)

f (1) : {0,1}n×n → ℝk1 [ f (1)(A)]i = 1⊤
n σ(ai + biA1n), i ∈ [k1]

f (2) : ℝk1 → {0,1} k2

k1, k2 ∈ O(n)

This is an even smaller class than all Boolean graph-invariant functions (since message-
passing is non-universal)



Hardness of learning GNN in the number of nodes
Hard family of functions in the concept class

•  counts the number of nodes in the graph with outdegree 


• Define a parity-like function indexed by :





• Define the family of hard function:


cA(i) i ∈ [n + 1]

S ⊂ [n + 1], b ∈ {0,1}

gS,b(A) = b + ∑
i∈S

cA(i) mod 2

ℋn = {gS,b |S ⊂ [n + 1], b ∈ {0,1}}



Hardness of learning GNN in the number of nodes
Main result

• Our result:


Any SQ algorithm that learns  up to classification error  


with queries of tolerance  


requires at least  queries.

ℋn <
1
4

τ

Ω (τ2 exp(nΩ(1)))

This smaller class of realistic Boolean functions are still hard to learn



Exponential CSQ lower bound for 
real-valued GNNs

Extending exponential lower bound for NN to GNNs



Hardness of learning GNN in feature dimension

• GNNs often has both graph data (adjacency matrix) and node features as 
input. 


• Node features are iid Gaussian , graph distribution  is arbitrary but non-
degenerate.


• Consider the function class of 1-hidden-layer graph convolutional network:


𝒩 ℰ

Fd,k
n = f : ℝn×d × 𝔾n → ℝ, f(X, 𝒢) = 1n

⊤σ(
apply linear map

A(𝒢)X
sum neighbor features

W)a |W ∈ ℝd×2k, a ∈ ℝ2k

number of nodes (fixed)

feature dimension

graph ReLU

learnable weights

adjacency matrix



Hardness of learning GNN in feature dimension
Hard functions

• Base on low dimensional subspace enumeration in 


Diakonikolas, Kane, Kontonis, and Zarifis. Algorithms and sq lower bounds for 
pac learning one-hidden-layer relu networks. COLT 2020 

• Hard functions   with gB
n (X, 𝒢) =

fn(XB, 𝒢)
∥fn∥𝒩×ℰ

fn(Z, 𝒢) = 1n
⊤σ(A(𝒢)ZW*)a*

low dimensional projection ℝd×2

hard GNN in low dimension : ℝn×2 → ℝ

special weights



Hardness of learning GNN in feature dimension

• Our result:


For any  


any CSQ algorithm that learns the hard class of function to some small 
constant error  


requires either queries or at least one query with tolerance 
  

d, n = Θ(1), k = Θ(d),

∥f − h∥L2(𝒩×ℰ) ≤ ϵ

2dΩ(1)

d−Ω(k) + 2−dΩ(1)



Main new tool
Graph-invariant Hermite polynomial

• 


• Acts as orthogonal basis for 1-hidden-layer GNN w.r.t  inner product.

HA
J : ℝn×d → ℝ : X ↦

1

n

n

∑
v=1

HJ ((AX)v) .

L2(𝒩)

This works out since action of  is ‘diagonal’ to action of the weight matrix on input A X



Other symmetries: frame-
averaged functions

Many complications in deriving lower bound for more general real-
valued symmetric functions



Group averaging
A naive approach to making symmetric function

• Given any (nice) function  and (nice) group , one can symmetrize:





• Symmetrizing 1-hidden-layer NN:





• E.g. when ,  is the cyclic group, this captures convolutional neural nets (with 
large, looped filters)

h : 𝒳 → ℝ G

R[ f ](x) := ∑
g∈G

f(g ⋅ x)

ℋG := f : ℝn×d → ℝ, f(X) =
1
|G | ∑

g∈G

a⊤σ(W⊤(g−1X))1d ∣ W ∈ ℝn×k, a ∈ ℝk ,

𝒳 = ℝn G



Family of hard function for group-averaging
Using subspace enumeration from Diakonikolas, Kane, Kontonis, Zarifis, 2020


Cℬ
G = gB : ℝn×d → ℝ with gB(X) =

∑g∈G f*(B⊤g−1X)

|G | ⋅ ∥f*∥𝒩
∣ B ∈ ℬ ⊂ ℝn×2 .

number of elements

feature dimension (fixed)

orthogonal projection to low-dim subspace

stock hard function in low dimension: ℝn×2 → ℝ



Exponential CSQ lower bound for group-averaging

• Our result:


For any  there exists a set of projections  of size at least 
, such that


any CSQ algorithm that learns  to some small constant error  


requires either queries or at least one query with tolerance 
.


• Exponential when . E.g. cyclic group.  

n, d = Θ(1), k = Θ(n), ℬ
2Ω(dΩ(1))/ |G |2

Cℬ
G ∥f − h∥L2(𝒩×ℰ) ≤ ϵ

2nΩ(1)/ |G |2

|G | n−Ω(k) + |G |2−nΩ(1)

|G | = poly(n)



Frame-averaging

• Group averaging is expensive


• Canonicalization: e.g. , symmetrize  by 


• A frame is a function  such that symmetrize an arbitrary 

function  by averaging  suffices


• E.g.  is the group-averaging (Reynold operator)

G = 𝒮n, 𝒳 = ℝn h : ℝn → ℝ h ∘ sort

ℱ : ℝn×d → 2G\∅
h

1
|ℱ(X) | ∑

g∈ℱ(X)

h(g−1X)

ℱ(X) = G, ∀X



Frame-averaging 1-hidden-layer MLP




• E.g. 


• If ,  has complicated distribution


• Can no longer use Diakonikolas, Kane, Kontonis, Zarifis, 2020 hard functions

ℋℱ := f : ℝn×d → ℝ, f(X) =
1

|ℱ(X) | ∑
g∈ℱ(X)

a⊤σ(W⊤(g−1X))1d ∣ W ∈ ℝn×k, a ∈ ℝk

f : ℝn×1 → ℝ, f(X) = a⊤σ(W⊤(sort(X)))

X ∼ 𝒩 sort(X)

Solution: assume sign-invariant frame (e.g. sort by absolute values) and use hard 
functions from Goel, Gollakota, Jin, Karmalkar, and Klivans. Superpolynomial lower 
bounds for learning one-layer neural networks using gradient descent. ICML 2020



Other results 

• SQ vs CSQ separation for learning invariant polynomial 


• NP hardness of proper learning of GNN via hardness of learning halfspace 
with noise


• Lower bound  norm for all our symmetric hard functions (also nontrivial)L2



Conclusion
• We formalized the intuition that symmetric function classes are smaller and 

thus easier to learn, by showing:

SQ/CSQ Exponential/Super 
polynomial

Boolean/
Real-valued Symmetric function class

SQ depends
 Boolean general

SQ exponential in nodes Boolean 2-hidden-layer message-passing NN

CSQ exponential in 
feature dimension real 1-hidden-layer GCN

CSQ exponential in items real (polynomial-sized) group-averaged 1-
hidden-layer  MLP

CSQ superpolynomial in 
item real sign invariant frame-averaged 1-hidden-

layer MLP

• Developed tools may be of independent interest (e.g. invariant Hermite 
polynomial)



Thank you!
Q&A

• Paper link: https://arxiv.org/abs/2401.01869


• ‘On the hardness of learning under symmetries’ - Bobak T. Kiani*, L.*, , 

Hannah Lawrence*, Stefanie Jegelka, Melanie Weber. 

https://arxiv.org/abs/2401.01869

