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Motivation



Graph algorithms scale with number of vertices

• Important data analysis algorithms scale with number of vertices  in a graph:


• Spectral decomposition:  (widely believed: )


• Graph neural networks (e.g. graph convolutional network): 


• In most graph-based task, complexity of the task does not scale with 


•  represents resolution of dataset, not complexity.
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Realistic graphs demonstrate intrinsic simplicity 

• ‘Small world phenomenon’.


• Scale-free/power-law graphs.

Figure by PJ Lamberson - UCLA

Reference: Kleinberg 2004, The small world phenomenon and decentralized search; 

Milgram 1967, “The small world problem”;  


Barabasi, Albert 1999, Emergence of scaling in random networks.




Solution: Sample small subset of nodes!
Two criteria

• Subsampling a small subset of  vertices, , scales graph algorithms:


1. Find an “informative” subset.


Strategy: optimal sampling


2. Find a “transferable” subset that is robust when the graph grows in size.


Strategy: graph limit

k k ≪ n



Look ahead: What can we do with such a subset?

• Faster existing algorithms:


• Spectral decomposition (e.g. eigenvector positional encoding): 
 


• Graph neural networks (e.g. graph convolutional network): 


• Theory: consistency/transferability results implies small decay in performance


• Empirical: node classification on citation network datasets 

Ω(n2) ≫ Ω(k2)

Ω(n2) ≫ Ω(k2)



Informative subset: Sampling theory
Warm up: L1(ℝ)

Theorem (Shannon-Nyquist theorem): An analog signal 
 with bandwidth in  is uniquely determined by 

uniform discrete samples at rate .  
f ∈ L1(ℝ) (0,2k)

k

Reference: Shannon, C.E., 1949. Communication in the Presence of Noise.

Figure by National Instruments



Informative subset: Sampling theory
Corollary: 1D-CNN, path graph

Corollary (Sampling for 1D-CNN): Given an analog 1D-image 
 with bandwidth in  and  uniform pixels, only 

 pixels is needed to uniquely determine .  
f ∈ L1([0,1]) (0,2k) n

k ≪ n f

Theorem (Shannon-Nyquist theorem): An analog signal 
 with bandwidth in  is uniquely determined by 

uniform discrete samples at rate .  
f ∈ L1(ℝ) (0,2k)

k



Informative subset: Sampling theory
Corollary: 1D-CNN, path graph

M
LP

blue nodes contain  
enough information 

to train the CNN

Corollary (Sampling for 1D-CNN): Given an analog 1D-image 
 with bandwidth in  and  uniform pixels, only 

 pixels is needed to uniquely determine .  
f ∈ L1([0,1]) (0,2k) n

k ≪ n f



Informative subset: Sampling theory
Finite graph  samplingG = (V, E)

Theorem (Pesenson, 2008, informal): A graph signal  with 
limited bandwidth  is uniquely determined by a uniqueness set 

f ∈ ℓ2(G)
λ U ⊆ V

Paley-Wiener space PWλ(G)

Eigenvalues/frequencies  λ1 ≤ λ2 ≤ … ≤ λn

Normalized Laplacian I − (D†)1/2A(D†)1/2

Graph Fourier transform 

Bandwidth cutoff at λ

∥f1 − f2∥ℓ2(U) = 0 ⟹ ∥f1 − f2∥ℓ2(G) = 0

⟹

f : V → ℝ

Reference: Pesenson 2008. Sampling in Paley-Wiener spaces on combinatorial graphs.



Towards transferable subset: graph limit 
Graphons and limit of dense graphs

• Graphons are symmetric, measurable functions 


• Interpretation:


1.   (informal)


2. Finite graph sampler: 


1. Given number of nodes , sample 


2. For each , sample 

W : [0,1] × [0,1] → ℝ

(V = [0,1], E = {(u, v) : W(u, v) ≠ 0})

n v1, …, vn
iid∼ Unif[0,1]

i < j ∈ [n] (vi, vj)
iid∼ Bern(W(vi, vj))

Reference: Lovasz, 2012, Large network and graph limits; 

Borgs, Chayes, Lovasz, Sos and Vesztergombi 2006 - 2008: Convergent sequences of dense graphs I, II: Subgraph frequencies, metric properties and testing,


Figure: Zhao, Graph Theory and Additive Combinatorics pg 134 




Towards transferable subset: graph limit
Transferability of graphs sampled from graphons

• Transferability between graphs with similar structures: for some rate ,
c > 0

d?(GNN( ⋅ , Gn, θ), GNN( ⋅ , Gm, θ)) ≤ O(1/mc + 1/nc)

input graph:  nodesn

learnable parameter

sampled frome same W

input node features ℝn

Theorem (Ruiz et al. 2023; 
informal): RHS = small 
number + O(1/m+1/n)

Reference: Ruiz, Chamon, and Ribeiro, 2023. Transferability properties of graph neural networks.

appropriate metric



Transferable subset: graph limit
Putting together…

• Uniqueness set for a finite graph = informative subset


• Finite graphs sampled from the same limit graphons are structurally similar 


 Study how to sample informative subset from limit graphon and get 
transferability for free
⟹



Our results



Informative subset: Sampling theory
Finite graph  samplingG = (V, E)

Theorem (Pesenson, 2008, informal): A graph signal  with 
limited bandwidth  is uniquely determined by a uniqueness set 

f ∈ ℓ2(G)
λ U ⊆ V

Paley-Wiener space PWλ(G)

Eigenvalues/frequencies  λ1 ≤ λ2 ≤ … ≤ λn

Normalized Laplacian I − (D†)1/2A(D†)1/2

Graph Fourier transform 

Bandwidth cutoff at λ

∥f1 − f2∥ℓ2(U) = 0 ⟹ ∥f1 − f2∥ℓ2(G) = 0

⟹

f : V → ℝ

Reference: Pesenson 2008. Sampling in Paley-Wiener spaces on combinatorial graphs.



Informative subset: Sampling theoryGraphon  sampling (via Poincaré inequality) W : [0,1]2 → ℝ

Theorem 2,3 (L., Ruiz, Jegelka, 2023; informal): A graphon signal  
with limited bandwidth  is uniquely determined by a msrbl uniqueness set s

f ∈ L2([0,1])
λ

graphon Paley-Wiener space PWλ(W)

Eigenvalues/frequencies  λ1 ≤ λ2 ≤ … ≤ λ−1

Normalized graphon Laplacian

Graphon Fourier transform 

Bandwidth cutoff at λ

∥f1 − f2∥L2(U) = 0 ⟹ ∥f1 − f2∥L2([0,1]) = 0

f : [0,1] → ℝ

⟹



Towards a sampling algorithm
Input: large graph . Output: small uniqueness set for all GN Gn, n ≥ N

1. Obtain an approximation of the limit graphon with .


2. Approximate uniqueness set  by  uniqueness set .


3. Map  to nodes  of finite graph . 

GN

U ⊆ [0,1] GN UN ⊆ [N]

UN ⊆ [N] Un ⊆ [n] Gn, n ≥ N



1. Obtain an approximation of limit graphon
Graphon is the closure of graphs (under cut norm)

• Embed  vertices into  - induced graphonGN [0,1]

Theorem (Lovász and 
Szegedy 2007): Graphon 
space is compact. Finite 

graphs are dense.
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Towards a sampling algorithm
Input: large graph . Output: small uniqueness set for all GN Gn, n ≥ N

1. Obtain an approximation of the limit graphon with .


2. Approximate uniqueness set  by  uniqueness set .


3. Map  to nodes  of finite graph . 

GN

U ⊆ [0,1] GN UN ⊆ [N]

UN ⊆ [N] Un ⊆ [n] Gn, n ≥ N



2. Approximate uniqueness set of graphons

Proposition 2 (L., Ruiz, Jegelka, 2023; informal): A graphon random model is 
equivalent to mixture models of random graphs. Well-fittedness measured by a 

difficulty function  (Schiebinger et al. 2015)φ(W; k, ℙi)

Graphon   mixture model of random graphs W ≡ K = (Ω, ∑i
ℙi, k)

≡ dℙ =
p𝒩(0.25,σ2) + p𝒩(0.,75,σ2)

2



2. Approximate uniqueness set of graphons
Gaussian elimination find uniqueness set with high probability

Theorem (L., Ruiz, Jegelka, 2023; informal) - Corollary of Theorem 2 
(Schiebinger et. al, 2015): If , GE with pivoting find uniqueness set 

with high probability.
φ ≪ 1

Figure from Schiebinger et al.

Reference: Schiebinger, Wainwright, Yu 2015. The 

geometry of kernelized spectral clustering



Towards a sampling algorithm
Input: large graph . Output: small uniqueness set for all GN Gn, n ≥ N

1. Obtain an approximation of the limit graphon with .


2. Approximate uniqueness set  by  uniqueness set .


3. Map  to nodes  of finite graph . 

GN

U ⊆ [0,1] GN UN ⊆ [N]

UN ⊆ [N] Un ⊆ [n] Gn, n ≥ N



3. Map graphon uniqueness set to nodes in graph
Consistency result

Proposition 6 (L., Ruiz, Jegelka, 2023; informal): If , for a 
sequence of graphs , there exists a number of node  such that 

for all , uniqueness set of  is also a uniqueness set of .

φ ≪ 1
GN → W N

n > N GN Gn



Empirical results



Experiments
Transferability



Conclusion

• Subsampling a small subset of  vertices, , scales graph algorithms:


• Find an `informative’ subset: sampling theory


• Find a `transferable’ subset: graph limit


• We derived a consistent algorithm that approximately samples from the 
limiting graphon uniqueness set, under theoretical guarantees.


• We tested our approach in real-world datasets, showing improvement over 
uniformly random sampling. 

k k ≪ n



Thank you!
Q&A
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