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Motivation




Graph algorithms scale with number of vertices

* Important data analysis algorithms scale with number of vertices 7 in a graph:
. Spectral decomposition: Q(72?) (widely believed: Q(72%370+))
. Graph neural networks (e.g. graph convolutional network): Q(77)

* |n most graph-based task, complexity of the task does not scale with n

e 71 represents resolution of dataset, not complexity.




Realistic graphs demonstrate intrinsic simplicity
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Barabasi, Albert 1999, Emergence of scaling in random networks. | Number of Connections
Figure by PJd Lamberson - UCLA
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Solution: Sample small subset of nodes!

Two criteria

« Subsampling a small subset of k vertices, kK << n, scales graph algorithms:

1. FIind an “informative” subset.

Strategy: optimal sampling

2. Find a “transferable” subset that is robust when the graph grows in size.

Strategy: graph limit




Look ahead: What can we do with such a subset?

* Faster existing algorithms:

» Spectral decomposition (e.g. eigenvector positional encoding):

Q%) > Q(k?)
» Graph neural networks (e.g. graph convolutional network): M > Q(k?)

 Theory: consistency/transferability results implies small decay in performance

 Empirical: node classification on citation network datasets




Informative subset: Sampling theory
Warm up: L'(R)

T heorem (Shannon Nyqu:st theorem) An ana/og SIQnal :
f = Ll( R) with bandwidth in (0,2k) is uniquely determined by

~uniform discrete samples at rate k

Reference: Shannon, C.E., 1949. Communication in the Presence of Noise.
Figure by National Instruments



Informative subset: Sampling theory
Corollary: 1D-CNN, path graph

T heorem (Shannon Nyqu:st theorem) An ana/og SIQnal :
f e L'(R) with bandwidth in (0,2k) is uniquely determined by

~uniform discrete samples at rate k

Corollary (Sampling for 1D-CNN): Given an analog 1D-image
fe LY([0,1]) with bandwidth in (0,2k) and n uniform pixels, only
k < n pixels is needed to uniquely determine f.



Informative subset: Sampling theory
Corollary: 1D-CNN, path graph

blue nodes contain
enough information
to train the CNN
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Corollary (Sampling for 1D-CNN): Given an analog 1D-image
fe LY([0,1]) with bandwidth in (0,2k) and n uniform pixels, only
k < n pixels is needed to uniquely determine f.



Informative subset: Sampling theory
Finite graph G = (V, E) sampling £V > R

' Theorem (Pesenson, 2008, informal): A graph signal f € £*(G) with ,
limited bandwidth 1 is uniquely determined by a uniqueness set U C V.

Normalized Laplacian [ — hH

l Graph Fourier transform

Reference: Pesenson 2008. Sampling in Paley-Wiener spaces on combinatorial graphs.



Towards transferable subset: graph I|m|t

Graphons and limit of dense graphs

« Graphons are symmetric, measurable functions W : [0,1] X [0,1] —

* |nterpretation:

1. (V=[0,1,E = {(u,v) : W(u,v) # 0}) (informal)

2. Finite graph sampler:

1. Given number of nodes 1, sample v, ..., v, iy Unit]0,1]

2. Foreachi <j € [n], sample (v;, ;) it Bern(W(v;,v))

Reference: Lovasz, 2012, Large network and graph limits;
Borgs, Chayes, Lovasz, Sos and Vesztergombi 2006 - 2008: Convergent sequences of dense graphs I, ll: Subgraph frequencies, metric properties and testing,
Figure: Zhao, Graph Theory and Additive Combinatorics pg 134



Reference: Ruiz, Chamon, and Ribeiro, 2023. Transferability properties of graph neural networks.

Towards transferable subset: graph limit

Transferability of graphs sampled from graphons

Theorem (Ruiz et al. 2023; |
| informal): RHS = small |

input node features R"|



Transferable subset: graph limit
Putting together...

* Uniqueness set for a finite graph = informative subset

* Finite graphs sampled from the same limit graphons are structurally similar

—> Study how to sample informative subset from limit graphon and get
transferability for free



Our results




Finite graph G = (V, E) sampling
Informative subset: Sampling theory

' Theorem (Pesenson, 2008, informal): A graph signal f € £*(G) with ,

Reference: Pesenson 2008. Sampling in Paley-Wiener spaces on combinatorial graphs.



Thtdthnative sulbd8L"Sarhplitig theEbry”

Theorem 2,3 (L., Ruiz, Jegelka, 2023; informal): A graphon signal f € L*([0,1])

Bandwidth cutoff at 4 \ — /\

graphon Paley-Wiener space PW,(W)j




Towards a sampling algorithm

Input: large graph G,. Output: small uniqueness set forall G ,n > N

1. Obtain an approximation of the limit graphon with G ;.
2. Approximate uniqueness set U C [0,1] by Gy uniqueness set Uy, C [/V].

3. Map Uy C [N]tonodes U, C |n] of finite graph G,,n > N.



1. Obtain an approximation of limit graphon

Graphon is the closure of graphs (under cut norm)

» Embed Gy, vertices into [0,1] - induced graphon

. Theorem (Lovdsz and |
| Szegedy 2007): Graphon |
space Iis compact. Finite |
raphs are dense. |
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Towards a sampling algorithm

Input: large graph G,. Output: small uniqueness set forall G ,n > N

2. Approximate uniqueness set U C [0,1] by Gy uniqueness set Uy, C [/V].

3. Map Uy C [N]tonodes U, C |n] of finite graph G,,n > N.



2. Approximate uniqueness set of graphons

Graphon W = mixture model of random graphs K = <£2 Z_Pi, k)

equivalent to mixture models of random graphs. Well-fittedness measured by a |

_ difficulty function ) (Schiebinger N

Py©0.25.62) T Py.75.62)
2

dP =




2. Approximate uniqueness set of graphons

Gaussian elimination find uniqueness set with high probability

(SCh'eb'"Qe" et al, 2015) /f /S 1 GE with pivoting find uniqueness set

(1 —a)|Z]

___with high probability. |

Figure from Schiebinger et al.
Reference: Schiebinger, Wainwright, Yu 2015. The
geometry of kernelized spectral clustering




Towards a sampling algorithm

Input: large graph G,. Output: small uniqueness set forall G ,n > N

3. Map Uy C [N]tonodes U, C |n] of finite graph G,,n > N.



3. Map graphon uniqueness set to nodes In graph
Consistency result

| Proposition 6 (L., Ruiz, Jegelka, 2023; informal): If ¢ < 1, for a
1 sequence of graphs G, — W, there exists a number of node N such that |
_foralln > N, uniqueness set of Gy is also a uniqueness set of G,. |



Empirical results



Experiments

Transferability

Table 2: Classification accuracy on the MalNet-Tiny dataset, (i) w/o positional encodings (PEs), (ii) w/
PEs computed on the full graph, (iii) w/ PEs computed on a graphon-sampled subgraph (removing or not
isolated nodes), and (iv) w/ PEs computed on a subgraph with randomly sampled nodes (removing or not
isolated nodes).

no PEs full graph PEs graphon sampled PEs randomly sampled PEs
w/ isolated w/o w/ isolated w/o
mean 0.26=x0.03 0.43=x0.07 0.291+0.06 0.33x0.06 0.28=0.07 0.2740.07
max 0.30 0.51 0.40 0.42 0.35 0.37




Conclusion

« Subsampling a small subset of k vertices, k < n, scales graph algorithms:

* Find an informative’ subset: sampling theory
* Find a transferable’ subset: graph limit

 We derived a consistent algorithm that approximately samples from the
limiting graphon uniqueness set, under theoretical guarantees.

* We tested our approach in real-world datasets, showing improvement over
uniformly random sampling.
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